微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 高速高精度钟控比较器的设计

高速高精度钟控比较器的设计

时间:12-20 来源:互联网 点击:

根据小信号模型的节点电流可得到如下公式:

其中,C1和C2是从VM10和VM11的漏极到地的电容,R1和R2是从VM10和VM11的漏极到地的电阻,为再生节点所加的初始电压。τ为时间常数,假设所有的晶体管相同,则有R1=R2,C1=C2,gm11=gm10=gm,从而τ1=τ2=τ。
用△Vo定义Vo1与Vo2的差值,用△Vi定义的差值,因此

需要注意的是:1)在钟控比较级使能之前,再生节点电压变化的速度随△Vi的增加而增大;2)τ的绝对值越小,传输延时越小,比较器工作速度越快。由此可知,通过增加输入跨导、减小输出节点的负载电容和提高初始输入电压差可提高比较器速度。
此外,存比较级电路后增加的输出缓冲级电路也能缩短比较器的比较时间。其优点是结合了比较级电路的正指数响应和正反馈latch结构的负指数响应,即比较级电路先经过一时间段将输入信号放大到某一差值Vx,输出缓冲级电路就会迅速将比较器的输出电压转化到逻辑电平。本文设计的比较级电路和输出缓冲级电路的瞬态响应如图5所示。

2.2 回馈噪声
在比较级电路工作阶段,再生节点电压的快速变化通过寄生电容对输入信号引起的干扰称为回馈噪声,其严重影响比较器的精度。在模数转换器中会用到大量的比较器,这些比较器上的回馈噪声将提高ADC的误码率。为了有效地抑制回馈噪声对比较器的影响,本文采用了隔离和互补技术。
在预放大级中增加开关晶体管VM4和VM5,实现了隔离输入信号与再生节点电压的回馈噪声。在比较器从复位阶段转变为比较阶段时,VM 4、VM5关断,切断了预放大器和比较级电路之间的信号通路,使再生节点电压的快速变化无法直接耦合到比较器的输入端,从而降低了回馈噪声。
互补技术的具体实现方法是在预放大级的输入端增加NMOS管VM25、VM26构成的电容,使其与输入晶体管VM1、VM2的栅漏电容CGD构成互补结构。为达到最佳互补效果,CM25,CM26的值应与CGD保持相等,即VM25、VM26的宽度应为VM1、VM2的一半。当输入对管源端电压发生变化时,CM25,CGD-M2和CM26,CGD-M1构成的互补结构使变化的电流相互抵消,从而提高输入电压的稳定性。
当比较器的时钟频率为300 MHz,输入信号幅度为100 mV时,回馈噪声对比较器基准参考信号产生的尖峰抖动在5 mV以内,如图6所示。与典型的A-B型锁存比较器百毫伏级左右的回馈噪声相比,本文设计的比较器电路结构有较强的抑制回馈噪声的能力。

3 仿真结果
在Cadence软件平台下,用Specte工具对基于TSMC0.18μm CMOS标准工艺模型的比较器电路进行仿真。采用5 V电源电压,300 MHz时钟频率,基准参考电压Vref一直保持为1.8 V,该电路的瞬态响应如图7所示。

第1栏为时钟控制信号clk;第2栏为比较器输入信号Vin,Vin接正负电平为1.801 V和1.799 V的矩形脉冲;第3栏为使能信号enable;第4、5栏为比较器输出节点Vout1和Vout2的波形。图7中曲线表明当enable信号为高电平时,比较器工作并在时钟信号clk下降沿处比较Vin和Vref的大小,在clk上升沿锁存输出结果。当Vin比Vref大1 mV时,输出电压Vout1为低电平,Vout2为高电平,反之输出结果相反。仿真结果符合设计要求,该比较器可达到10位的比较精度。
由于工艺及温度变化等因素的影响,实际所得器件参数将产生一定的可变性。为提高产品的成品率及实际性能指标,在27、-40和100℃温度下分别对该电路进行了corners仿真。在不同工艺角下,比较器均可正常工作,其传输延时、功耗和输入共模范围等主要性能参数在一定范围内有所波动,如表1所示。

4 结束语
基于预放大锁存理论,本文设计了一种高速高精度钟控电压比较器。采用预放大级、钟控判断级和输出缓冲级结构实现了高比较速度,获得了较小的可分辨电压。着重分析了改进比较器比较速度和回馈噪声的理论和方法。在TSMC0.18μm CMOS标准工艺下,对可能出现的工艺偏差以及使用温度的变化进行了全面的模拟仿真。仿真结果表明,该钟控比较器在速度、精度、传输延时和回馈噪声等重要性能参数方面有显著的优势,可应用于高速高精度模数转换器与模拟IP核的设计。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top