EMC/EMI卫星外部电磁环境效应分析与控制
电磁发射途径的互联电缆进行建模,将电缆中传输的信号作为激励源,计算得到单机设备通过互联电缆在辐射到星外的电场分布。
3. 卫星外部电磁环境效应的控制
对卫星外部电磁环境效应进行控制,防止星外电磁环境干扰星上设备的正常工作,包括两个方面的工作,一个是对星外电磁环境本身进行控制,即针对强电场环境和弱电场环境分别进行控制,改变电场环境的分布规律,在关注区域降低电磁辐射强度,另一个是在电磁环境不可改变的情况下,提高卫星射频接收机和星外敏感设备的抗干扰能力。
3.1 星外电磁环境控制
对于大大功率射频发射机产生的有意强电场分布,我们可以在卫星总体设计方案允许的范围内,通过以下几种方法对其进行控制:
a. 调整天线安装位置;
b. 调整天线副瓣方向图;
c. 使用金属板进行电磁遮挡;
d. 使用吸波材料减小电磁反射。
在应用这几种控制方法时,需使用电磁场数值仿真分析软件对控制的效果进行分析验证。图3显示了使用一块拐角金属板对安装太阳敏感器的位置进行遮挡的仿真分析,遮挡后该位置的电场强度下降了12V/m。
图3 使用拐角金属板对安装太阳敏感器的位置进行遮挡的仿真分析示例
对于普通单机设备产生的无意弱电场分布,主要通过为其制定严格的电场辐射发射试验限值来进行控制,以使这些设备产生的无意电磁发射,不会干扰射频接收机的正常工作。所依据的计算公式如下:
其中P为射频接收机的灵敏度,L为从接收天线到接收机的射频衰减量,AF为接收天线的天线系数。在计算得到的结果上再叠加一定的电磁干扰安全裕度和计算误差,即可作为各设备在该频段的电场辐射发射限值。值得注意的是此时还需考虑被测设备与射频接收天线的相对安装位置和电磁隔离特性(如星体表板的屏蔽作用),从而可以对限值进行进一步的调整。
3.2提高敏感设备的抗干扰能力
经过对星外强电磁环境的分析,能够得到星外敏感设备周围的电场强度,卫星总体设计部门在该电场强度的基础上叠加一定的余量(比如10dB,考虑到分析误差和设备自身应具有的电磁干扰安全裕度)后作为电场辐射敏感度指标下发给设备研制单位,然后研制单位可根据该指标对设备采取相应的抗电磁干扰措施,主要包括以下几个方面:
a. 设备互联电缆改为屏蔽电缆;
b. 提高设备壳体屏蔽效能,使用导电衬垫、导电胶等消除机壳缝隙;
c. 在设备内部电路中使用有效的滤波器或滤波电路,并注意将滤波器(电路)的输入/输出进行隔离;
d. 对有视窗的设备(如地球红外敏感器、太阳敏感器等的视窗),视窗应使用导电玻璃,并保证导电玻璃四周与设备金属壳体之间搭接良好。
4.结论
卫星外部电磁环境的存在直接影响着星外敏感设备和射频接收机的正常工作。卫星总体设计部门可在卫星方案阶段对星外的电磁环境进行有效的预估和分析,一旦发现电磁干扰隐患,则采取有效的电磁环境控制和提高星外设备抗电磁干扰能力的措施,消除电磁干扰隐患,保证初样或正样卫星的星外电磁环境不会影响卫星自身的兼容性。
- 电磁污染及电磁环境计量(06-16)