微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一种用于多路输出的PEMFC控制系统电源的研制

一种用于多路输出的PEMFC控制系统电源的研制

时间:03-28 来源:互联网 点击:

PEMFC氢能发电机具有无污染、高效率、无噪声和具有连续工作和模块化的特点,特别是具有不受“卡诺”循环限制、工作温度低、热辐射小等优点,在军用和民用领域都具有十分广阔的应用前景。由于PEMFC发出的是变化范围较大的直流电,必须经过稳压、逆变等转换后,获得稳定的输出电压后才能应用于负载。在PEMFC发电机的控制系统电源采用自发电供电时,电源系统需要适应发电机的输出特性。控制系统正常工作是发电机安全可靠运行的重要条件,可靠的电源是控制系统稳定运行的基础,因此,研究适应PEMFC发电系统输出电特性的控制系统电源是非常必要的。

1 PEMFC控制系统电源总体结构设计

本文分析了一种输入/输出隔离型的DC/DC变换电路结构,如图1所示。该电路采用单端反激式结构,以PwM方式首先将PEMFC输出的36~72 V直流电压逆变为高频方波,经高频变压器降压,再整流滤波得到稳定的24 V和5 V直流电压。其主要由三菱智能功率模块(IPM)、高频变压器、整流滤波电容、霍尔电压传感器和PwM控制板组成,PWM控制板通过DSP实现。

2 主电路的设计

2.1 IPM功率模块

IPM即智能功率模块(intelligent POWER module),它是将IGBT连同其驱动电路和多种保护电路封装在同一模块内,使系统设计者可从繁琐的IGBT驱动和保护电路的设计中解脱出来。

IPM选择三菱智能功率模块PM300HHA120,其包含一只300 A/1 200 V的IGBT,其内部含有门极驱动控制、故障检测和多种保护电路,并且内置有电流传感器。

IPM可以实现的保护功能有:控制电源欠压保护(UV);过热保护(OT);过流保护(OC);短路保护(SC)。需要强调的是,IPM的保护功能自身并不能排除故障。在电路设计时应利用故障输出信号FO,使系统在故障发生时能够封锁IPM的输入信号并停机。PM300HHA120的控制输入和输出都用光耦隔离,如图2所示,采用隔离的电源单独供电,确保安全可靠。

2.2 高频变压器

高频变压器的设计是研制开关电源的关键技术。单端反激式开关电源的变压器实际是一个耦合电感,它实现直流隔离、能量存储和电压转换的功能。它的性能不仅对电源效率有很大影响,而且关系到开关电源的电磁兼容性等技术指标。

已知参数:直流输入的最大电压VIN=72 V;直流输入的最小电压VINmin=36 V;开关频率fs=20 kHz;输出电压Vo1=5 V,Vo2=24 V;输出电流Io1=1 A,Io2=0.5 A;输出功率Po=5×1+24×0.5=17 W;电源效率η=80%;损耗分配系数Z=0.5,Z为次级损耗与总功率的比值;初级纹波电流Ir与初级峰值电流Ip的比值Krp=0.4。

(1)初级电感量的计算

初级峰值电流Ip的表达式为:

将数值代入后可求得Ip=1.17 A。

在每个开关周期内,由初级传输给次级的磁场能量变化范围是LpI2p/2~Lp(Ip-Ir)2/2。初级电感量由下式确定,并代人数可得:

(2)磁芯的选择。铁氧体软磁材料是复合氧化物烧结体,电阻率很高,尤其适合高频下使用,并且价格便宜,故本开关电源中的高频变压器使用R2KB锰锌铁氧体材料制成的磁芯。其在25℃时饱和磁感应强度Bs=350 mT。磁芯工作磁感应强度可选为饱和磁感应强度的0.7倍,Bw=0.7Bs=245 mT。

根据功率和工作频率选择E135型磁芯,其Ap=1.52 cm4,Ae=1.04 cm2,Aw=1.46 cm2。

(3)确定变压器各绕组匝数。确定变压器的磁芯后,可根据下式求得变压器原边的匝数:

计算得:Np=100.2匝,实际取101匝。

对5 V输出变压器次级电压Vs1=Vo1+Vl1+Vf1=5+0.3+0.4=5.7 V,其中变压器次级绕组压降Vl1为0.3 V,输出肖特基整流管导通压降VF1为0.4 V。

对24 V输出变压器次级电压Vs2=Vo2+VL2+Vf2=24+0.6+0.7=25.3 V

其中变压器次级绕组压降VL2为0.6 V,快恢复整流管压降Vf2为0.7 V。

计算次级绕组匝数:

对5 V输出:

实际取10匝。

对24 V输出:

实际取42匝。

2.3 整流滤波

(1)输出滤波电感的设计。输出滤波电感中的电流除存在直流分量外,并且叠加一个较小的交流分量。输出滤波电感的设计一般要求电感电流的最大脉动量为最大输出电流的10%~20%。

对于输出电压Vo=5 V,输出电流Iomax=1 A,最大占空比Dmax=0.63。

代入这些值则得:L=462.5μH。

对于输出电压Vo=24 V,重复上面的计算可得:L=0.004 4 H。

(2)输出滤波电容的选择。输出滤波电容上的纹波电流:

根据上一节得到的数据,将ISRMS1=1.712 A,ISRMS2=0.856 A分别代入上式中,可求得Iri11.39 A,Iri2=0.695 A。滤波电容在20 kHz时的纹波电流应大于等于Iri。

输出的纹波电压由式Vri=IsprO决定。滤波电容C2,C3,C4选用330μF/50 V,C5选用100 μF/25 V。

3 控制电路的设计

3.1 PWM控制电路

这里以数字信号处理器(DSP)TMS320LF2407为

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top