双极发射极跟随器:具有双通道反馈的RISO
CMOS RRO参考缓冲电路的外观与双极发射极跟随器示例中所采用的电路外观一模一样。在本应用示例中,我们采用电压为5V的单电源,对2.5V的参考电路(该电路的电压值低于输入电压范围的技术规范[输入电压范围:5V-1.5V=3.5V])进行缓冲。由于为了获得良好的稳定性,在高频时FB#1和FB#2将提供所需要的反馈,因此,在Vout处,可获取准确的参考电压。Riso将使两条反馈电路单独运行,互不干扰。
图40:具有双通道反馈的RISO:CMOS RRO。 |
由于在本应用示例中,我们采用的是单电源,因此,我们将运用一些新技巧来获取如图41所示的空载Aol曲线。首先,我们需要确保在开展DC工作点分析之后的OPA734输出信号处于工作的线性区域。通常来说,由于运算放大器的饱和输出信号并非处在工作的线性区域,因此,其未能提供恰当的AC性能。对于大多数运算放大器宏模型来说也是如此。在DC状态时,LT为短路而CT为开路。OPA734的非反相输入限制为Vs/2(2.5V)。因此,输出将为Vs/2(2.5V)。如图所示的RL接线方式,在运算放大器的输出端不存在DC负载。RL以及LT为低通滤波器函数提供了一条AC通道。这样,在反馈电路中,就可使DC处于短路状态而AC处于开路状态。务必提请注意的是,在进行AC分析前,SPICE必须开展DC闭环分析,以找到电路的工作点。另外,RL以及CT为高通滤波器函数提供了一条AC通道,这样,使得我们能将DC开路电路和AC短路电路一起并入输入端。而且,LT和CT按大数值等级选用,以确保其在各种相关的AC频率时,电路短路和开路情况下的正常运行。
图41:Aol测试示意图:CMOS RRO。 |
从Tina SPICE仿真测量得出的OPA734 Aol曲线如图42所示。测得的单位增益带宽为1.77MHz。
图42:Aol测试结果:CMOS RRO。 |
图43:由Zo、CCO、RCO、CL改变Aol效应的TINA电路。 |
现在,我们必须测量如图43所示的Zo(小信号AC开环输出阻抗)。该Tina SPICE测试电路将测试空载OPA734的Zo。请注意,由于我们测试的是单电源电路,因此将输出信号调整至Vs/2(2.5V),以确保运算放大器输出电流的正弦波位于工作的线性区域。RL以及LT为低通滤波器函数提供了一条AC通道。这样,在反馈电路中,就可使DC处于短路状态而AC处于开路状态。由于RL限定在Vout(2.5V)和Vs/2(2.5V)之间,所以DC工作点在输出端显示为2.5V或Vs/2伏,这也就是说,OPA734没有电流流入或流出。此时,通过运用1Apk AC电流发生器(我们能够扫视10mHz至1MHz的AC频率范围),Zo的测量工作能够轻松完成。最后,得出测量结果Zo=Vout(如果将测量结果的单位从dB转换为线性或对数,Vout也就是以欧姆为单位的Zo)。
图44:Zo、开环输出阻抗:CMOS RRO。 |
从图44中,我们可以看出,OPA734 Zo是CMOS RRO运算放大器输出级所独有的特征。而且,这种输出级的Ro在高频时,处于支配地位。同时,Co所呈现出的电容效应在频率低于92Hz时,处于支配地位。
根据前面图表的仿真测试结果,我们在图45中构建了OPA734的Zo模型。RO直接测得为129欧姆,fz直接测得为92Hz。根据测得的fz和RO数值,我们可以轻松地计算出CO的数值(为13.4uF)。最终完成了如图所示的Zo模型。
图45:Zo模型:CMOS RRO。 |
图46:Zo外部模型:CMOS RRO。 |
为了使1/β分析的情况包含在Zo与Riso、CL、CF以及RF之间相互作用的影响结果内,我们需将Zo从运算放大器的宏模型中分离出来,以便于弄清楚电路中所需的节点。这种构思如图46所示。另外,U1将提供产品说明书的Aol曲线,并从Riso、CL、CF以及RF的各种影响中得到缓冲。
通过如图47所示的Zo外部模型,我们能够测量Zo与Riso、CL、RF以及CF之间的相互作用对1/β的影响。RO和CO是我们在前一张图表中测出的参数。GM2将U1(OPA734运算放大器宏模型)从Zo外部模型中隔离开来。将GM2设置为1/RO以保持适当的Aol增益,目的是与最初的OPA734运算放大器宏模型和产品说明书中的Aol相匹配。在SPICE进行AC分析前,其必须开展DC分析。因此,我们需确保扩展后的运算放大器模型,将具备正确的DC工作点而无需使U1达到饱和状态。为此,我们在CO至VO之间添加了一条低频通道。GMO将由RO两端的电压控制(该电压与VOA相匹配)。将GMO设置为1/RL以维持DC状态时的综合增益水平,目的是与最初的OPA734 Aol相匹配。另外,一只低通滤波器由RLP和CLP形成,并设置为0.1*fLOW(fLOW是相关的最低频率)。将RLP设置为1000*RO,以避免RO上出现负载或相互作用(影响),最终导致Zo传输函数发生错误。
图47:Zo外部模型详图:CMOS RRO。 |
首先,我们分析如图48所示的FB#1。请注意,由于我们只分析FB#1,所以CF可视为处于开路状态。接下来,
- 双极性移相控制高频脉冲交流环节逆变器研究(10-07)
- 一种单片机双极模拟信号A/D转换的电路设计(06-08)
- 一种H型双极模式PWM控制的功率转换电路设计(11-24)
- 用于军事和航空航天领域的高可靠性技术(06-24)
- 横向PNP钳位型晶体管受辐射时损耗的计算(12-29)
- 选择开关电源双极性开关管的方法(05-29)