微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 音频系统标准和协议探讨

音频系统标准和协议探讨

时间:04-24 来源:互联网 点击:

给函数。解码后的音频数据被复制到已分配的输出缓冲器中。串行端口用于将此解码音频数据以I2S格式驱动至DAC,然后将模拟信号馈送至功率放大器,最后再馈送至扬声器。

  音频算法

  音频算法可以分为两类:主解码器算法和后处理算法。主解码器算法包括Dolby、DTS 5.1、DTS 6.1、DTS96/24、AAC等。后解码或后处理算法包括Dolby ProLogic、Dolby ProLogic II、DTS Neo6、Surround EX、Dolby耳机、Dolby虚拟扬声器、THX、原始环绕声、Dynamic EQ、Delay等。必须使用高性能信号处理器,而且能执行房间均衡等额外功能。

音频放大器

  放大器可以分为如下几类:A类、B类、AB类和C类。放大器的类别基本上由晶体管放大器的工作点或静态点决定。此点位于共发射极配置中晶体管输出特性的直流负载线上。静态点表示相对于特定基极电流“IB”的特定集电极电流“IC”。基极电流“IB”取决于晶体管的偏置,集电极电流 “IC”是直流电流增益“hfe”与基极电流“IB”的乘积。A类放大器的静态点几乎位于负载线有效区间的中点,对于任何给定的输入信号变化,晶体管总是在有效区间工作,忠实放大输入信号,而不会引起任何中断或失真。此类放大器用于小信号放大,然后该信号即可驱动功率放大器。由于晶体管始终导通,因此会消耗大量功率,功率效率较低。这使得A类放大器不适合用作功率放大器。为了提高效率,晶体管必须关闭一定的时间,为此需要降低直流负载线上的静态点,使它偏向截止区间。这样就得到其他类型的放大器,如B类、AB类和C类。采用推挽配置的B类放大器是首选功率放大器。它以推挽方式使用两个晶体管,各晶体管导通 180°。

  但在交越时,存在一个二者均不导通的区间,这会导致交越失真。C类放大器的功率效率可以达到80%,但由于晶体管的导通比例不足输入信号的50%,因此输出失真较高。在有效区间使用晶体管还要求利用散热器来保护晶体管,而这正是D类放大器技术优于其他类型的地方。

  图7为一个D类放大器系统。有时将这种放大器称为数字放大器,但事实并非如此。其工作原理仍然与其他类型放大器相同,但D类放大器的输入信号为PWM(脉冲宽度调制)信号。由于数字输入在逻辑高电平和逻辑低电平之间来回切换,因此晶体管工作在饱和区间或截止区间,但决不会工作在有效区间,因此功耗始终最低。这使得功率效率大幅提高,但同时也会引起较高的总谐波失真(THD)。

  

  图7 模拟域中的D类放大器系统框图

  为了解调PWM并重建原始模拟波形,需要使用由LC(电感+电容)构成的高质量低通滤波器。由于大多数音频系统使用DSP,因此D类放大器对音频系统设计很有利。音频信号可以由DSP本身调制为PWM,然后直接馈送至D类放大器的输入端,而无须使用音频DAC或编解码器。因此,除了提高放大器功率效率以外,它还能通过消除编解码器/DAC来降低系统成本。对于D类放大器设计而言,低通重建滤波器是确保良好THD指标的最重要因素。

  结语

  音频系统设计近年来发展迅猛,特别是在家庭娱乐和汽车音响领域。各种标准、编码技术和强大的处理器已使得多声道高清音频成为现实。音频系统设计人员仍在攻克各种难题,例如,保持高功率效率、实现更低的THD和再现高质量声音等。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top