镁燃料电池原理研究
镁燃料电池具有比能量高、使用安全方便、原材料来源丰富、成本低、燃料易于贮运、可使用温度范围宽(–20℃~80℃)及污染小等特点[1]。作为一种高能化学电源,拥有良好的应用前景,因此很多研究学者与单位对其进行了研究。早在20世纪60年代,美国GE公司就对中性盐镁燃料电池进行了研究[2]。随后美国海军海底战事中心(Naval Undersea Warfare Center)与麻省理工大学(University of Massa-chusetts Dartmouth)以及BAE Systems公司共同研制成功了用于自主式潜航器的镁-过氧化氢燃料电池系统[3]。该电池采用海水作电解质,镁合金作阳极材料,液态过氧化氢作阴极氧化剂。该电池提供了一个成本较低并且更为安全的高能动力,是低速率、长寿命的自主式潜航器的理想驱动电源。20世纪90年代初,Westinghouse公司研制出了海洋应用的圆柱型海水电解质镁/空气燃料电池[4]。1996年,挪威与意大利共同开发了镁燃料电池,并应用于180m深的海底油井或气井探测的海洋水下自动控制系统。该海水电池采用商业镁合金作阳极,海水作电解质,海水中溶解的氧为氧化剂,阴极用碳纤维制造。这个电池系统能量达到650kWh,系统设计寿命为15年[5]。加拿大Greenvolt Power公司研制的100W和300W级镁/盐水/空气燃料电池(MASWFC),能量密度是铅酸电池的20倍以上,可为电视、照明灯、便携电脑、手机及GPS等设备供电。加拿大Magpower Systems公司研制的盐水电解质镁/空气燃料电池,能连续提供300W功率,成功应用于偏远地区水净化系统水泵的供电[6]。Medeiros等研究了Mg-H2O2半燃料电池,电池的阳极为镁合金AZ61,导离子膜是Nafion-115,阴极为垂自植入到碳纸上的碳纤维担载的Pd-Ir,阳极电解液为海水,阴极电解液为海水 硫酸 过氧化氢,单电池在连续30 h的放电期间内,在25mA/cm2的电流密度下,电池电压稳定在1.77V~1.8 V之间。根据消耗的镁,过氧化氢和硫酸的质量计算出来电池的比能量达500~520Wh/kg[7]。
然而,镁燃料电池总体上存在着三大缺陷[1, 6, 8]:(1)容量损失大,(2)负极利用率低,(3)电压损耗大。其中,容量损失大和负极利用率低主要是由于镁的自腐蚀引起的,而镁的负差效应将进一步加剧镁的自腐蚀,因此,很多学者通过制备镁合金和运用电解液添加剂两种途径来降低镁的自腐蚀,提高电池容量和负极利用率。而电压损耗大则受镁及镁合金放电产物和正极活性物质的影响,可通过运用电解液添加剂和制备新型催化剂来解决。
本文将镁燃料电池的研究进展分为工作原理、电极的研究和电解液添加剂三部分进行阐述。
2 镁燃料电池的工作原理
镁燃料电池(Magnesium fuel cell,又称Magnesium semi-fuel cell)主要由镁合金阳极,中性盐电解质和空气(氧气或其它氧化剂)阴极三部分组成。镁及镁合金是非常活泼的金属,适合用作阳极材料。阴极氧化剂可以利用空气或者海水中的氧,还有过氧化氢和次氯酸盐等,根据氧化剂不同,目前研究的燃料电池可分为镁-空气燃料电池,镁-海水燃料电池,镁-过氧化氢燃料电池,镁-次氯酸盐燃料电池[1, 6, 8, 9]。
2.1 镁-空气燃料电池
镁-空气燃料电池工作原理示意图如1所示。
图1 镁-空气燃料电池工作示意图。
中性盐条件下镁-空气燃料电池的放电反应机理如下:
阳极反应:Mg→Mg2 2e- –2.37 V
阴极反应:O2 2H2O 4e-→4OH- 0.40 V
电池总反应:Mg 1/2O2 H2O→Mg(OH)2 2.77 V
中性盐电解质镁-空气燃料电池的寄生反应:
析氢反应:Mg 2H2O→Mg(OH)2 H2↑
2.2 镁-海水燃料电池
镁-海水燃料电池结构示意图如2所示。
图2镁-海水燃料电池结构示意图
镁-海水溶解氧半燃料电池的放电反应机理类似于镁-空气电池。
2.3 镁-过氧化氢燃料电池
镁-过氧化氢燃料电池是镁-空气(氧)燃料电池的一个分支,其工作原理示意图如图3所示。
图3 镁-过氧化氢燃料电池工作示意图
中性盐电解质镁-过氧化氢燃料电池的放电反应:
阳极反应:Mg→Mg2 2e- -2.37 V
阴极反应:HO2- H2O 2e-→3OH- 0.88 V
电池总反应:Mg HO2- H2O→Mg2 3OH- 3.25 V
中性盐电解质镁-过氧化氢燃料电池的寄生反应:
分解反应:2H2O2→2H2O O2↑
沉淀反应:Mg2 2OH-→Mg(OH)2(s)
Mg2 CO32-→MgCO3(s)
析氢反应:Mg 2H2O→Mg(OH)2 H2↑
酸性条件下镁-过氧化氢燃料电池的放电反应机理如下:
阳极反应:Mg→Mg2 2e- -2.37 V
阴极反应:H2O2 2H 2e-→2H2O 1.77 V
电池反应:Mg H2O2 2H →Mg2 2H2O 4.14 V
2.4 镁-次氯酸盐燃料电池
镁-次氯酸盐燃料电池工作原理示意图如4所示。
图4 镁-次氯酸盐燃料电池工作原理示意图
中性盐电解质镁-次氯酸盐燃料电池的放电反应:
模拟电源 电源管理 模拟器件 模拟电子 模拟 模拟电路 模拟芯片 德州仪器 放大器 ADI 相关文章:
- 采用数字电源还是模拟电源?(01-17)
- 模拟电源管理与数字电源管理(02-05)
- 数字电源正在超越模拟电源(03-19)
- 数字电源PK模拟电源(04-03)
- TI工程师现身说法:采用数字电源还是模拟电源?(10-10)
- 开关电源与模拟电源的分别(05-08)