我们先说说什么叫PWM
可以看出,正弦波具有很好的对称性,还能对正弦表再进行优化。
因此,本文提出了利用分时复用以及正弦波的对称性,对三相正弦表进一步优化,以进一步减少正弦表所占用的逻辑门,提高FPGA的利用率。
1 数据的合成
数据合成由分时复用电路和运算电路两部分组成。通过分时复用,使得所需的正弦表减少到原来的1/3,即产生三相正弦波只需一个正弦表。运算电路利用正弦波的对称性,使得实现一个完整周期的正弦波只需1/4周期的正弦表。两者结合,从而完成三相正弦波只需一个1/4周期的 正弦表,达到最大程度的节省资源的目的。
1.1 分时复用原理及其应用
分时复用的原理是各路信号占用同一信道的不同时间间隙进行信号传输。具体到本电路就是利用对正弦表寻址的高速度,使一个正弦表在不同时间段查询不同相的正弦波的幅值,以达到减少正弦表所占用的FPGA资源的目的。
电路的具体实现:三路在相位上互差120°的地址数据并行输入,通过一个三选一的选择器来进行选择,选择器的控制端接三进制的计数器[1]。如,计数器为0时,输出的是A相的地址。计数器为1时,输出的是B相的地址。计数器为2时,输出的是C相的地址。因此只要使输入的三相地址周期性变化,就实现了并行输入的三相地址数据在时间上形成了连续,也就实现了三相地址数据的合成。这样就可以利用一个正弦表来得到三相的正弦值。把正弦表减少到没有采用分时复用时的1/3。该部分电路的仿真波形如图1所示。图中ADDA,ADDB,ADDC分别为A相,B相和C相的相位值。ADDRESS为合成一路后的相位值。
1.2 正弦波的对称性及其应用
由正弦波波形可知,正弦波具有很好的对称性。π/2~π的幅值大小与0~π/2的幅值大小相同,只是他们在时间上出现的顺序刚好相反。π~3π/2的幅值与0~π/2的幅值的绝对值相同,极性相反。3π/2~2π部分的幅值与π~3π/2的大小相等,只是时间上出现的顺序相反。因此,根据正弦波的对称性,只在正弦表ROM中存有相位0~π/2时的幅值。利用0~π/2相位时的幅值产生完整的正弦波波形。 产生正弦波首先需要对正弦表进行寻址,把量化的相位值转化为对应的量化的幅值。由于正弦表ROM中仅存有相位0~π/2时的幅值,而π/2~π,3π/2~2π的绝对值与相位0~π/2的幅值在时间上出现的顺序相反,因此,要获得π/2~π,3π/2~2π的幅值必须对相位0~π/2时的幅值进行反向寻址。反相寻址通过地址输入矢量取反来实现[2]。本设计把周期2π量化为8位,即对一个正弦波周期进行256次取样。因此对0~π/2相位寻址所需的地址线为64条。ADDRESS定义为STD_LOGIC_VECTOR(7DOWNTO0),ADDRESS低6位用于对ROM表进行寻址,当地址数据ADDRESS(6)为“1”时,对地址ADDRESS的低6位取反再对ROM寻址。
正弦波的负半周的形成。由于负半周的幅值与正半周的幅值在极性上相反,因此对输出的对应的幅值取反。幅值是否取反由输入的地址数据ADDRESS(7)决定,当ADDRESS(7)为“1”时,对应的输出幅值取反[2]。并把ADDRESS(7)取反作为最终输出的正弦波幅值的最高位。这样做实际上把正弦波向Y轴正方向平移了一个幅值,避免了幅值出现负值。
这样在分时复用的基础上,通过利用正弦波的对称性,完成了三相数据只需一个1/4周期的ROM即可查询。在分时复用和利用正弦波对称性2个相对独立的模块连接的过程中必须考虑到时序的问题。如果只是把2个模块简单的连接到一块,只能产生一相的SPWM,如果时序上解决不好,产生的三相正弦波精度会受到影响,一个周期的正弦波不再由256个点组成,如果这样,也就失去了优化的意义。
2 数据的分离
由以上可知,从一个1/4正弦波周期的ROM表中可以得到三相相位互差120°的正弦波的幅值,但是由于输入的三相地址在时间上是连续的,即对ROM表寻址的地址只有一路,因此,虽然得到了三相正弦波的幅值,可是他们是按ADDRESS中各相之间的关系混合在一起的。因此,必须对所得到的幅值进行分离,才能得到三相正弦波。由波形ADDRESS中各相地址的相互关系可知,分离数据只要把分时复用的合成部分反接即可,仿真波形如图2所示(为了使在同一个波形中可以同时看清DATA中的各项数据,图2对MAXPLUSⅡ的仿真波形的2.0μs之前的输出零部分进行了截去。)图中DATA为根据1/4周期正弦
模拟电源 电源管理 模拟器件 模拟电子 模拟 模拟电路 模拟芯片 德州仪器 放大器 ADI 相关文章:
- 采用数字电源还是模拟电源?(01-17)
- 模拟电源管理与数字电源管理(02-05)
- 数字电源正在超越模拟电源(03-19)
- 数字电源PK模拟电源(04-03)
- TI工程师现身说法:采用数字电源还是模拟电源?(10-10)
- 开关电源与模拟电源的分别(05-08)