微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 功率LED热设计关键之如何针对热阻进行热管理

功率LED热设计关键之如何针对热阻进行热管理

时间:05-12 来源:互联网 点击:

性能时,必须注明测试环境(参考温度) 。如果光度测量和热阻测量同时进行,则参考温度就是冷板的温度。

LED说明书中的数据是基于环境温度25oC,但往往 LED的实际工作环境温度为50oC,最高甚至可以达到 80oC。其结温的范围可能在80oC~110oC的范围。较高的 LED工作温度会导致LED 光通量的大幅下降。

图 7显示了 Cree MCE系列白色LED光通量和参考温度的关系,这些测试主要基于两种不同的散热设计方案。测试主要由两块不同的 PCB,一个金属芯片和 FR4装置所组成。此外,PCB和散热器之间使用了不同的导热界面材料。当散热器温度不断增加,光通量不断下降。

因为两次测试使用一样的LED,所以预计的测试结果是两条平行的曲线,但实际情况并非如此。总的结点至环境的热阻也随着参考温度的变化而变化。图8的结构函数也表明热流路径随温度变化。其中最初的1.5K/W的热阻是有 LED 内部封装所引起的。之后的热阻部分对应于PCB和位于PCB与LED封装之间的TIM材料。 最后一部分是PCB与散热器之间的导热界面材料。在TG2500 样品的测试中,两层 TIM 材料都显示出其热阻与温度有很大关系, 从而导致了总热阻有20%的变化。 图8中的结构函数被对应到LED的各个组成部分。

  光通量是真实结温的函数

一旦获得了 LED每一个参考温度下的热损耗和参考温度值,通过公式 2可以计算出实际 LED 结温:

其中,Pheat=IFxVF(Tref)-Popt(Tref)也是公式 1中使用的,RthJA是测量的热阻值。如果将图 7中的测试数据进行重新处理,将光通量作为 LED 结温的函数,我们发现两种测试的结果几乎一致(如图9所示) 。两条几乎重合的光通量和结温的曲线表明,在我们两种测试中 LED芯片和其封装有着一样的光输出特性。

其中,Pheat=IFxVF(Tref)-Popt(Tref)也是公式 1中使用的,RthJA是测量的热阻值。如果将图 7中的测试数据进行重新处理,将光通量作为 LED 结温的函数,我们发现两种测试的结果几乎一致(如图9所示) 。两条几乎重合的光通量和结温的曲线表明,在我们两种测试中 LED芯片和其封装有着一样的光输出特性。

  结论

温度是 LED照明设备性能的一个重要影响因素,不仅仅影响其预期工作寿命而且决定其工作性能。更低的工作温度可以获得更多的光通量。由于绝大多数的LED 供应商没有将 LED 热阻测试和光度测试同时进行。所以,如今的 LED说明书中无法提供 LED 真实的热阻值。因此,LED供应商提供的热阻值要比 LED 实际应用中的热阻值要低。如果想要通过 CFD仿真的方式获得 LED的热性能,那么知道 LED的真实热阻值是必须的。如果没有这方面的信息,那么结合光度测量和热瞬态测试,并且再进行一些测试数据处理就可以获得热阻的相关信息。

很少有 LED说明书会注明各种温度下光输出特性。 通过确定测试中 LED的热阻和热损耗,可以将光输出特性描述成真实结温的函数。这就可以消除测试过程中不同环境温度对于实际热阻的影响。当光输出特性可以与实际的结温相对应,那么精确地比较不同的 LED照明设备也就成为可能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top