微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 评估低抖动PLL时钟发生器的电源噪声抑制性能

评估低抖动PLL时钟发生器的电源噪声抑制性能

时间:05-17 来源:互联网 点击:
  1. 到PLL时,时钟输出TIE分布表现为正弦概率密度函数(PDF)。DJ可以采用双Dirac模型1通过测量两个高斯分布与TIE直方图的平均峰值距离估算。图9给出采用Agilent Infiniium DSO81304A 40GSa/s实时测量示波器得到的TIE直方图,测得的峰值分量为9.4ps。


    图9. 测量得到的TIE直方图

    需要注意的是,实时测量示波器的存储器深度可能会限制叠加到PLL电源的正弦调制频率的下限。例如,如果测试设备具有2Msps的存储器深度,采样率设为40Gsps时,它只能够采集最低20kHz的抖动频率成分。

    方法5. 采样示波器测量

    使用采样示波器时,分析测试条件下的时钟抖动时需要具备同步触发信号。TIE测量可以采用两种触发方式。

    第一种方式将低抖动参考时钟叠加到PLL时钟发生器的输入;采用相同的时钟源触发采样示波器。图10a给出了测量得到的TIE直方图,峰值间距为9.2ps。利用参考时钟触发的优点在于所测量的TIE直方图峰值分量与相对触发位置的水平时间延时无关。而测量的TIE直方图会受触发时钟抖动的影响。因此,测试时采用比时钟发生器具有更低抖动的时钟源作为触发将尤为重要。

    还可以选择另外一种方式,即自触发,消除触发时钟抖动的影响。这种情况下,测试条件下时钟发生器的输出通过功率分配器分成两路相同信号。其中一路信号连接到采样示波器的数据输入,另外一路信号连接至触发输入。由于触发信号具有与测试信号相同的DJ,当示波器主时基的水平位置扫描一个正弦调制频率周期时,直方图峰值间隔将发生变化。在调制信号一半周期的水平位置,TIE直方图的峰值间隔将是测试信号DJ的两倍。图10b给出了当水平时间延时设为5μs时,测量到的MAX3624 TIE直方图。TIE峰值间隔的估算值为19ps,等效于9.5psP-P的DJ。

    图10c给出了从触发点开始不同水平延时所测量的TIE直方图峰值间隔。为了便于比较,还给出了参考时钟输入触发采样示波器时的TIE测试结果。


    详细图片(PDF, 69kB)
    图10. 不同触发条件下得到的TIE直方图:REF_IN触发(a);自触发,td = 5μs (b);以及峰值间隔与相对触发时间延时的关系(c)。

    测量方法总结

    表1总结了MAX3624输出125MHz时钟时的DJ测量结果。利用上述不同的测量方法得到测试数据。需要注意的是,利用双Dirac逼近法从TIE直方图测量DJ,要比通过频域频谱分析获得的DJ数值小。产生这一差异的原因是:正弦抖动(SJ) PDF与随机抖动的高斯分布的卷积过程不同1。因此,从双Dirac模型提取的DJ只是一个估算值;仅在随机抖动的标准方差远比抖动直方图两个峰值间隔的距离小得多时才有效。

    表1. DJ比较*

    Measurement MethodsDJ (psP-P)
    Power Spectrum11.2
    SSB Phase Spurious10.3
    Phase Decomposition10.5
    Real-Time Scope9.4
    Sampling Scope
    (Reference Triggered)
    9.2
    Sampling Scope
    (Self-Triggered)
    9.5
    *电源上叠加80mVP-P、100kHz正弦信号。

    结论

    对于本例采用的相对较大的干扰,结果比较准确。当然,当干扰电平降到与随机抖动相当的幅度时,时域测试法的精度变差。此外,如果时钟信号被幅度调制破坏,则采用功率频谱分析仪测量到的结果将不可靠。因此,这里介绍的所有测量方法中,采用相位噪声分析仪进行相位杂散功率测量是描述时钟发生器PSNR最为精确、便捷的方法。同样的方法可以扩展到其它杂散产物出现在相位噪声频谱时对DJ的影响。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top