微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 关于变频器的输出切换问题探讨——兼论水泵群

关于变频器的输出切换问题探讨——兼论水泵群

时间:05-20 来源:互联网 点击:

时,称为锁定,此时输出一个切换信号,便可以在PLC的控制下,安全、平稳地进行变频器和工频电网之间的相互切换了。

4.4ABB公司ACS1000中压变频器的同步切换控

制功能[5]

ACS1000型中压变频器,是ABB公司用最新功率开关器件—IGCT(集成门极换流晶闸管)设计生产的三电平新型高效中压变频器系列。并采用了先进的直接转矩控制(DTC)技术,从而获得了非常出色的转矩特性和速度响应特性。输出功率315kW~5000kW;输出电压等级有2.3kV、3.3kV、4.16kV。(对于6kV电机须进行Y/△改接)

ACS1000变频器的另一个突出优点是,为了满足电动机循环软起动及调速运行和定速运行之间的


图1锁相环路的基本组成


图2同步切换系统框图


关于变频器的输出切换问题探讨——兼论水泵群软起停控制方案


图3同步旁路切换控制系统单线图


图4不同供水调节方式的经济性比较


切换,特别设计了变频器与工频电网之间的同步旁路切换功能,满足了这类用户的要求,拓展了变频器的应用领域。同步旁路切换控制系统如图3所示。旁路切换控制系统有两种型号:单机旁路和多机旁路,选用多机旁路时最多可控制4台电动机。

5恒压供水及水泵群软起停控制系统

可以说恒压供水系统是变频器应用最普遍和最成功的场合,虽然系统设计五花八门,各有高招,然而却不尽合理。

5.1不同供水调节方式的经济性

一般的供水系统,由于供水量及可靠性的要求,都采用多台泵并联运行的方式。这样也有利于当供水量在大范围内变化时,通过水泵的台数调节实现经济运行,但是仅用台数调节,不能保证恒压供水,且其运行效率也不高。水泵采用转速调节流量,运行的经济性最好。但对于容量较大的供水系统,若采用全容量转速调节,投资太大,也无必要。所以对于多台水泵的供水系统,用一台调速泵即可实现全容量范围的恒压供水,其它的泵只要定速运行。即用台数调节和转速调节共同保证供水量变化范围内的恒压供水。其经济性比较如图4所示。

系统中的调速泵一般用变频器拖动。变频器除了通过调节水泵转速实现恒压供水外,也可通过切换控制用作其它泵的软起动设备。但如前面分析的那样,切换控制是一个关键。采用硬切换方式,若操作不当,不可避免地会出现较大的冲击电流,甚至使变频软起动功能失去意义,且频繁的切换操作还可能会损坏变频器。采用同步切换就要增加控制和检测设备的投资,同时考虑到变频器过高的使用率,为了保证供水系统的可靠性,变频器最好考虑备份。 5.2一种经济实用的恒压供水系统

这里推荐一种既经济实用,又安全可靠的恒压供水控制系统,即用一台变频器固定拖动调速泵保证恒压供水,用一台软起动器负责多台定速泵的起停控制,整个供水系统的协调控制则用一台可编程序控制器(PLC)实现,其控制系统框图如图5所示。

该方案在大型母管制供水系统中几乎已成为标准设计。系统中的软起动器指的是电子式晶闸管降压起动器,其原理控制框图如图6所示。它的起动性能虽然没有变频软起动好,有较小的冲击电流存在,但因其投资省,且可与电网任意切换而不会造成任何损害,还可实现软停车,消除“水锤效应”,因而得到了广泛的应用。为了减小由软起动器起动水泵时的冲击电流,可在每台水泵的出口处装设电动阀门,起动前将阀门关闭,等电机起动达到全速后,再将阀门打开,这些操作都可以交由PLC完成。 由图6可见,通过晶闸管的移相控制作用,使电动机的电压按一定的规律升为全压后,接通旁路接触器,撤去晶闸管的控制信号,关断晶闸管,软起动器即可退出运行。当某台水泵需要退出系统软停车时,可以先将软起动器投入,使晶闸管全开通,再将该泵的旁路接触器跳开,软起动器就可通过控制晶闸管的导

通角,逐渐减小输出电压,进行水泵的软停车。

这样的恒压供水系统,既经济又可靠。尤其是在城市自来水系统中,因水泵功率大,多采用高压电动机拖动。由于高压变频器的价格昴贵,故只用变频器拖动一台调速泵运行。软起动器的价格则仅为变频器价格的15%~20%左右,由它来控制其它泵的起停,这样由于避免了变频器的切换操作,系统可靠性大大

()


专家论述


图5恒压供水控制系统框图


图6软起动器控制框图


提高。

5.3变频器旁路与软起动器旁路的分析比较

由图6可见,软起动器的功率器件—晶闸管的输入端也是接到电网的,所以当将电动机由软起动器切换到电网运行时只是将晶闸管短路而已,切换操作对晶闸管丝毫没有影响。而变频器一般采用交一直—交系统,即使将变频器整个短路后,变频器的直流母线还通过整流器由电网供电,逆变器的功率器件仍然要承受直流高压,这时逆变器的功

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top