微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 关于变频器的输出切换问题探讨——兼论水泵群

关于变频器的输出切换问题探讨——兼论水泵群

时间:05-20 来源:互联网 点击:

子堵转(S=1)所产生的堵转电流不是一回事,所以在切换时会面临二个问题:一方面要避开反电势引起的冲击电流,另一方面又要利用电机的转速,以减小合闸冲击电流。因此应当选择一个最为合适的时间重合闸,才能使切换引起的冲击电流最小,倒并非要等转子完全停止后再合闸,因为此时的电流即为全压静止起动电流。

由此可见,硬切换一定会引起冲击电流,只是其值大小不同罢了,不可能做到平稳切换。为了减小硬切换时引起的冲击电流,当变频器的输出频率已经达到50Hz时,可在变频器及电动机参数许可的范围内,继续加速到55Hz左右,再将电动机从变频器切出,电动机进行自由停车运行,同时转子电流逐渐衰减,经过1~2s,转子电流基本已衰减为零,且转速也已下降到额定转速附近时,再将电动机投入电网运行,将会有较小的冲击电流。当然为了避免电动机从变频器切出时变频器因甩负荷而引起的过电压损坏功率器件,在切换前应先封锁变频器的输出。

3.2由电网向变频器切换

到目前为止,还没有人敢在变频器运行中将电动机由电网向变频器切换,因为由以上的分析可知,这无疑是对变频器作一次破坏性的试验,过大的冲击电流将使变频器跳闸或损坏。 如果电动机拖动的负载不允许突然停车的话,或者须由定速运行转为调速运行时,可以这样操作:先将电动机由电网切除,自由停车运行,延时1~2s,避开反电势的影响,在封锁输出的情况下将电机接到变频器,变频器跟踪电动机转速并以跟踪频率启动运行,冲击将会很小。ABB公司的ACS1000型变频器就有跟踪起动功能[5]。

4同步切换(软切换)

同步切换就是在不停电的情况下,利用锁相环技术,使变频器输出电压的频率、幅值和相位均保持与电网电压一致,然后可进行变频器与电网之间的相互平稳切换。

()


专家论述


4.1由变频器向电网切换

同步切换的过程是这样的:变频器拖动电机软起动,平稳升频到接近50Hz,进入锁相环路的捕捉范围,之后在锁相环路的作用下,锁定变频器输出电压的频率、幅值、相序和相位与工频电网一致,将电动机与工频电网之间的接触器吸合,电网和变频器同时向电动机供电,然后封锁变频器的输出,并将电机从变频器切出,电动机即平稳地切换到电网运行。

由于进行了同步操作,变频器的输出参数与电网参数保持一致,在接入电网时对变频器和电动机都不会有什么影响。然后有一段时间变频器和电网同时对电动机供电。为了使变频器能安全而退,应该逐渐减小变频器的负荷,可以稍稍降低变频器的输出电压幅值,然后封锁变频器的输出,再进行切换操作。 4.2由电网向变频器切换

在由电网向变频器同步切换之前,变频器先空载加速到50Hz,启动锁相环路的跟踪技术,经过一段时间的跟踪调整,达到锁定状态后变频器合闸,然后电网开关跳闸,电动机即平稳地由电网切换到变频器调速运行。

为了尽量减小切换过程中对变频器的冲击作用,在锁定状态变频器合闸之前,应稍稍调低变频器输出电压的幅值,以免合闸时造成对变频器过大的冲击电流。在过渡到由电网和变频器同时向电动机供电阶段,再稍稍调高变频器输出电压的幅值,逐渐将负荷从电网向变频器转移,以免在电网开关跳闸时对变频器造成过大的冲击。

4.3锁相控制[1]

锁相控制就是利用锁相环路(PLL)通过让变频电源的频率和相位自动跟踪工频电源的频率和相位,达到“锁定”状态,从而为同步切换创造条件。锁相环路是一个闭环的相位控制系统,能够自动地跟踪输入信号的频率和相位,使输出信号的频率和相位与输入信号同步,称之为“锁定”。锁相环路主要由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO,这里即为变频器)三个基本部分组成,其构成如图1所示。

图2为具有同步切换功能的交流异步电动机循环软起动切换控制装置框图。用一台变频器分时软起动3台异步电动机,每一台电动机软起动以后,切换到工频电网定速运行。系统由变频器、相位信号取样电路、锁相控制电路、可编程控制器和切换接触器等组成。相位信号取样电路对工频电源和变频器输出电压实行取样、隔离和整形处理。锁相环路由锁相控制电路和变频器组成;锁相控制电路则由鉴相器和环路滤波器组成。

同步切换控制系统以工频电源的电压相位信号θ1(t)作为基准信号,变频器输出的电压相位信号θ2(t)作为跟踪信号。鉴相器比较两个信号的相位,输出一个正比于两个信号相位差的电压信号ud(t),经滤波器滤波后作为变频器的辅助频率给定信号,用以控制变频器输出电压的频率和相位,达到跟踪工频电源频率和相位的目的。当二者的频率相等,相位差稳定在一个较小的数值

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top