低电压大电流同步整流技术的现状及发展
1引言
随着电子技术的迅速发展,以及各种微处理器、IC芯片和数字信号处理器的普及应用,使低电压大电流输出变换器的研究成为十分重要的课题之一。在低电压大电流输出的情况下,使用一般的二极管整流,整流损耗占了变换器总损耗的一半以上,很难达到高效率。使用同步整流技术则可以较大地减少整流损耗,从而提高变换器的效率。
同步整流技术按其驱动信号类型可分为电压驱动和电流驱动。而电压驱动的同步整流器按驱动方式又可分为自驱动和外驱动两种。下面将分别对以上不同的同步整流技术进行分析比较。
2MOSFET模型及损耗分析
使用同步整流技术是为了减少整流损耗,提高效率。不管采用那种同步整流技术,都是通过使用低通态电阻的MOSFET替代输出侧的整流二极管,以最大限度地降低整流损耗。因此必须先讨论MOSFET的模型和损耗。MOSFET的模型[1]如图1所示。
MOSFET的主要损耗为
1)寄生电容充放电所造成的损耗Pc
Pc=2f∫C(v)vdv(1)
式中:f为开关频率;
C(v)为寄生电容值;
v为加在电容两端的电压。
2)MOSFET的导通损耗PRds
PRds=Io2Rds(2)
式中:Io为输出负载电流;
Rds为通态电阻,Rds=Rcha+Rd,其中Rcha为MOSFET的导通沟道和表面电荷积累层形成的电阻,Rd是由MOSFET的JFET区和高阻外延层形成的电阻[1]。
由式(1)、式(2)可见,寄生电容造成的损耗与频率相关,在低频率时较小,整流损耗主要由导通损耗决定。因此可利用MOSFET的自动均流性将多个

图1MOSFET模型
(a)自驱动同步整流电路原理图
(b)变压器副边电压波形

图2自驱动同步整流技术
(a)电路原理图
(b)工作波形图

图3使用了Active?clamp的自驱动同步整流技术
MOSFET并联使用,以减少通态电阻,从而减少导通损耗;但在高频率时,并联使用MOSFET虽然可以减少导通损耗,但是在通态电阻成倍减少的同时,寄生电容却成倍地增加,所造成的损耗可能会远大于减少的导通损耗。因此在使用同步整流技术时,应协调处理这两种损耗。
3)MOSFET器件存在着寄生二极管,此二极管造成的通态损耗Pd
Pd=IoVd(3)
式中:Vd为寄生二极管导通压降。
由于寄生二极管的导通压降Vd一般在1V以上,远大于MOSFET的导通压降。因此应尽量避免负载电流流过寄生二极管或尽量缩短流过寄生二极管的时间,以减少不必要的损耗。
3自驱动电压型同步整流技术
3?1传统的自驱动同步整流技术
自驱动电压型同步整流技术是由变换器中的变压器次级电压直接驱动相应的MOSFET,如图2(a)所示。这是一种传统的同步整流技术,其优点是不需要附加的驱动电路,结构简单。缺点是两个MOSFET的驱动电压时序不够精确,MOSFET不能在整个周期内代替二极管整流,使得负载电流流经寄生二极管的时间[如图2(b)中的toff所示]较长,造成了较大的损耗,限制了效率的提高[4]。
3.2应用有源嵌位技术的自驱动同步整流技术
针对自驱动电压型同步整流器的不足,提出了有源嵌位(Active?clamp)技术[2],如图3(a)所示。电容Ca以及控制开关S2的引入,使得两个MOSFET轮流导通,避免了负载电流流过寄生二极管,从而减少了损耗。在t1至t2时,开关S1导通,由电源向变压器供电;在t2时刻,S1关断,变压器原边自感电势反向,并通过S2的寄生二极管向电容Ca充电;到t3时刻,S2导通,变压器原边通过S2向Ca继续充电直到原边电流为零,然后电容开始向变压器原边放电,产生反向电流;在t4时刻,S2关断,变压器原边产生正向电压以维持电流;到t5时刻,开始下一周期。由图3(b)可见,变压器原边电压波形中没有出现如图2(b)中的toff,从而避免两MOSFET寄生二极管的导通,减少了整流损耗,较大地提高了效率。
3.3应用谐振技术的同步整流技术
使用方波电压驱动MOSFET时,由式(1)知MOSFET的寄生电容充放电造成的损耗与fCv2成正比。因此在高频情况下,如f>1MHz,这一损耗将成为主要的损耗。使用传统的自驱动同步整流技术[4],寄生电容引起的损耗将会很大,而使用谐振技术,用正弦波来驱动MOSFET,则可以大大减少整流损耗。使用了谐振技术的一种同步整流电路[1]如图4所示。由于谐振电容Cs的加入,使得Q1的寄生电容Cgd在整个周期内与Cs并联:在Q1导通时Cgs与Cs并联,在Q1关断时Cds与Cs并联[1],Q2也是如此。于是,Q1、Q2所有寄生电容均在一周期内与Cs并联,即寄生电容被谐振电容Cs“吸

图6电流驱动同步整流技术
模拟电源 电源管理 模拟器件 模拟电子 模拟 模拟电路 模拟芯片 德州仪器 放大器 ADI 相关文章:
- 采用数字电源还是模拟电源?(01-17)
- 模拟电源管理与数字电源管理(02-05)
- 数字电源正在超越模拟电源(03-19)
- 数字电源PK模拟电源(04-03)
- TI工程师现身说法:采用数字电源还是模拟电源?(10-10)
- 开关电源与模拟电源的分别(05-08)
