微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 专门针对数字光投影仪而优化的电源设计

专门针对数字光投影仪而优化的电源设计

时间:05-29 来源:互联网 点击:

投影系统中的电源设计优化体现在高强度放电 (HID) 或 LED 要求、功率因数校正以及能效方面。

TI 开发的数字光投影仪 (DLP) 显示技术采用光半导体来进行数字化光处理。DLP 芯片作为一款纯数字器件,能够为大量产品提供高品质的图片,其中所涉及的产品包括大屏幕数字 HDTV、商用/家用或适合专业场所的投影仪以及数字影院。由于光源(其可能为高强度放电灯泡或 LED 阵列)的不同而造成对电源的要求各异,并且在功率因数校正 (PFC) 和能效方面也提出了基于标准的要求,因此这些应用就提出了一些独特的电源设计挑战。

为了满足这些电源要求,设计人员需要了解 DLP 芯片的基本工作原理以及在应用中用于提供电力的一些选项。

DLP 工作原理


DLP 芯片是一种复杂的电灯开关,其中内含一个由多达 200 万个安装在铰链上的微镜所组成的矩形阵列,每个微镜的尺寸为 16 微米×16 微米。当 DLP 芯片与数字视频或图形信号、光源和投影镜头相互协调工作时,其镜面就会将纯数字图像反射到屏幕或其他表面上。

DLP 芯片的每个微镜都安装使它们在 DLP 投影系统(打开时)中或远离投影系统(关闭时)时都能对着光源倾斜的微型铰链上,从而使投影表面上的像素或明或暗。输入半导体的位流图像编码可指令每个微镜进行开关操作,其速度可高达每秒几千次。当微镜开启时的频率大于关闭时的频率时,它就会反射浅灰色的像素;而当微镜关闭时的频率更高一些时,则会反射深灰色的像素。这样一来,DLP 投影系统中的微镜就能反射高达 1024 级灰度梯度的像素,以便将输入 DLP 芯片的视频或图形信号转化为一个非常复杂的灰度级图像。

DLP 投影系统中的灯泡所产生的白光会在其传输到 DLP 芯片的表面时通过一个红、绿和蓝三色彩色图像滤波器。在通过该滤波器之后,彩色光随后将按顺序落到 DLP 芯片上以形成一个具有多达 1670 万色的图像。某些 DLP 投影系统包含了一个可投射出多达 35 万亿色的三芯片架构。

每个微镜的开关状态会与这三种基本的构建色块进行相互协调。例如,负责投射紫色像素的微镜将只反射红色和蓝色的光到投影表面。随后,我们的眼睛会将这些快速地交替闪烁的颜色混合起来,于是在投射的图像中就可看到预期的色调(请参见图 1)。

图 1 DLP 芯片中的大量微镜将光反射到屏幕上以实现高分辨率图像

DLP 系统供电


图 2 显示了一款典型 DLP HDTV 电源系统的结构图,其供给的总功率可达 200W。因为这些产品专供欧洲市场,因此通常还需要提供 PFC 电路以满足他们的谐波要求。PFC 电路可提供稳定的 400V 电压,用于为灯泡、低压逻辑和模拟电路供电。此外,在关闭期间还有一个可供给较小持续负载的备用电源。通常,此备用电源应为节能型或绿色环保电源。为了符合“能源之星”标准,在无负载的情况下,该电源所消耗的输入功率必须要低于 0.5W。

图 2 镇流器是 HID TV 的最大负载

采用 LED 作为光源是另一个可直接影响到 DLP 产品电源设计的趋势。除了无需镇流器之外,LED 还带来了更长的灯泡使用寿命和更高的光效,并且还去除了彩色图像滤波器。LED 为生成质量极佳的图像提供了一系列全新的可能性。颜色分块不再依赖于彩色图像滤波器设计和旋转速度,这样就能获得更多的混频选项并通过电流电平管理来提供更快的开关切换速度和强度控制。LED 光引擎的小尺寸设计在便携式产品也是一个很明显的优势。

图 3 显示了 LED 投影仪的电源结构图。和 DLP LED HDTV 非常类似,它也提供了一个备用电源、PFC 电路、主电源和 LED 电源。在此结构图中,LED 是由其中一个主电源输出来驱动的。备用的电路结构则通过 PFC 的 400V 输出为 LED 驱动器供电。尽管这些电源在结构图中看起来非常简单,但实际上它们都有其各自的设计挑战。

图 3 LED 省去了便携式投影仪中的 HID 灯

转移模式还是连续导电模式?


在采用 HID 灯和镇流器的 DLP 应用中,必须要在使用转移模式 PFC 还是连续导电模式 (CCM) PFC 之间做出决定。两种拓扑结构均为非隔离型升压转换器,这种转换器可从全波整流的 AC 线路输入生成稳定的 400V DC 输出。除了生成一个 DC 电压之外,PFC 还会迫使线路电流(即 PFC 升压电感中的电流)在波形和相位上顺从输入电压。这样就减少了线路频率谐波并提高了功率因数。

连续导电模式 (CCM) 和转移模式控制之间的差异如图 4 所示。一款采用 CCM 的 PFC 会使用固定频率的 PWM 来调节电感中的平均电流。因此,PFC MOSFET 就必须在电流仍流经电感和二极管时保持开启状态,这样就会导致较高的开关和逆向恢复损耗。超快二极

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top