一种自适应耦合TV和高阶PDE的图像放大模型
DE模型式(4)并不会像TV模型那样把图像变为几个灰度值不同的块,而是将它平滑成一个灰度渐变的区域,虽然这和真实图像不一定相同,但它一般不会产生额外的边缘,与TV模型的结果相比,四阶PDE模型克服了TV模型存在的图像分块这一不足,具有保持平坦区域光滑度的优点,但却降低了边缘等重要几何结构的清晰度。
为充分发挥这两种PDE模型的优点,本文提出自适应耦合TV和四阶PDE的图像放大模型。其基本思想就是根据图像的局部特征,自适应调整这两种正则化模型的权重。在图像渐变区域和平坦区域主要运用四阶PDE进行平滑,消除分块效应;而在图像的突变区域重点用TV模型进行平滑,保持突变边缘。其最小化能量函数为:
式中:λ>0为Lagrange乘子;p∈[0,1],决定了TV和四阶模型的权值,可根据图像内容自适应调节。在突变区域,要求p等于或接近于0,这样就主要采用二阶TV模型对图像进行平滑;在图像的渐变区域和平坦区域,要求0p1,这样该模型中就包含了四阶模型的特性,克服了TV模型存在的不足。
式(5)对应的Euler-Lagrange方程为:


2 实验结果与分析
本文实验主要与传统的双线性插值方法、TV模型和四阶PDE模型放大方法进行比较。算法性能由放大图像的峰值信噪比(Peak Signal to Noise Rate,PSNR)及主观视觉效果评价。
本组实验中,对512×512的不同内容的标准图像,进行4倍率平滑下采样,得到分辨率为128×128的低分辨率图像,然后采用不同的方法放大。实验参数为:λ=0.01,△t=0.001,T=100,k=20,
,σ=5。采用不同方法对5幅标准图像放大的PSNR比较见表1。从PS-NR的角度看,本文耦合模型达到了最高的PSNR值。

图1,图2分别为对Cameraman,Lena图像及其部分细节用TV模型及本文耦合模型放大结果比较图。


从细节放大图的对比可见,TV模型复原的图像存在严重的分块效应,而本文耦合模型将图像平滑成了一个灰度渐变的区域,消除了分块效应,得到了视觉效果较好的图像。
3 结论
通过将TV模型和四阶PDE自适应结合,充分运用四阶PDE模型保持渐变区域光滑度的优点弥补总变分TV模型存在分块效应的不足,同时也保留了TV模型保持图像中不连续边缘的优点。实验结果表明了本文模型的良好性能,同时也证明了PDE方法用于图像处理的优越性。进一步的研究包括彩色图像的PDE处理等。
- 基于DSP的彩色TFT-LCD数字图像显示技术研究(05-05)
- 3D集成电路将如何同时实现?(04-09)
- 一种新型CMOS图像传感器的设计(02-04)
- USB控制器芯片及其在图像采集中的应用 (10-12)
- CCD时代将被CMOS终结?(05-17)
- 十个电荷泵的设计方案以及经典应用案例(07-04)
