ofdm的基本原理
重,如果不采取措施对这种信道间干扰(ICI)加以克服,系统的性能很难得到改善。
OFDM中的同步通常包括3方面的内容:
(1)帧检测;
(2)载波频率偏差及校正;
(3)采样偏差及校正。
由于同步是OFDM技术中的一个难点,因此,很多人也提出了很多OFDM同步算法,主要是针对循环扩展和特殊的训练序列以及导频信号来进行,其中较常用的有利用奇异值分解的ESPRIT同步算法和ML估计算法,其中ESPRIT算法虽然估计精度高,但计算复杂,计算量大,而ML算法利用OFDM信号的循环前缀,可以有效地对OFDM信号进行频偏和时偏的联合估计,而且与ESPRIT算法相比,其计算量要小得多。对OFDM技术的同步算法研究得比较多,需要根据具体的系统具体设计和研究,利用各种算法融合进行联合估计才是可行的。OFDM系统对定时频偏的要求是小于OFDM符号间隔的4%,对频率偏移的要求大约要小于子载波间隔的1%~2%,系统产生的-3dB相位噪声带宽大约为子载波间隔的0.01%~ 0.1%。
2.2 PARP的解决
由于OFDM信号是有一系列的子信道信号重叠起来的,所以很容易造成较大的PAPR。大的OFDM PAPR 信号通过功率放大器时会有很大的频谱扩展和带内失真。但是由于大的PARP的概率并不大,可以把大的PAPR值的OFDM信号去掉。但是把大的PAPR值的OFDM信号去掉会影响信号的性能,所以采用的技术必须保证这样的影响尽量小。一般通过以下几种技术解决:
(1)信号失真技术。采用修剪技术、峰值窗口去除技术或峰值删除技术使峰值振幅值简单地线性去除。
(2)编码技术。采用专门的前向纠错码会使产生非常大的PAPR的OFDM符号去除。
(3)扰码技术。采用扰码技术,使生成的OFDM的互相关性尽量为0,从而使OFDM的PAPR减少。这里的扰码技术可以对生成的OFDM信号的相位进行重置,典型的有PTS和SLM。
2.3 训练序列/导频及信道估计技术
接收端使用差分检测时不需要信道估计,但仍需要一些导频信号提供初始的相位参考,差分检测可以降低系统的复杂度和导频的数量,但却损失了信噪比。尤其是在OFDM系统中,系统对频偏比较敏感,所以一般使用相干检测。
在系统采用相干检测时,信道估计是必须的。此时可以使用训练序列和导频作为辅助信息,训练序列通常用在非时变信道中,在时变信道中一般使用导频信号。在OFDM系统中,导频信号是时频二维的。为了提高估计的精度,可以插入连续导频和分散导频,导频的数量是估计精度和系统复杂的折衷。导频信号之间的间隔取决于信道的相干时间和相干带宽,在时域上,导频的间隔应小于相干时间;在频域上,导频的间隔应小于相干带宽。实际应用中,导频的模式的设计要根据具体情况而定。
模拟电路 模拟芯片 德州仪器 放大器 ADI 模拟电子 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 利用GM6801实现智能快速充电器设计(11-20)
