基于ADS8364的智能测磁仪设计
否需要上位机通讯,如果是则将外部存储器中的数通过SCI传到上位机,否则开中断进入下一个采样周期。每组A/D在一个工频周期内最多采样点数为800点,这一值可以根据需要通过键盘进行设置。
上位机提供了多种显示界面,极大地方便了使用。与下位机显示终端最大的区别在于不仅包含了所有下位机的功能,而且能够直观地显示电压、电流波形及磁滞回线。4 实验结果
在非铁磁材料中,磁通密度B和磁场强度H之间呈直线关系,直线的斜率等于u0。而在铁磁材料中磁通密度B和磁场强度H之间是非线性的。铁磁材料置于交流磁场中,材料被反复磁化,磁畴相互不停地磨擦、消耗能量,产生磁滞损耗。磁场变化一个周期时,被磁场吸收的能量可用磁滞回线的面积来表示,这部分能量将消耗在铁磁材料内,转化为热能。磁滞损耗用下式表示:
其中:V为铁心的体积;f为磁场交变的频率;H为磁场强度;B为磁通密度。
磁通密度最大值愈大,磁滞回线面积愈大,磁滞损耗也越大。
通过式(1)可以看出,磁通密度与磁感应强度的大小直接影响到磁滞损耗,而磁滞回线面积的大小能够准确反映磁滞损耗情况。据此对一台单相试品变压器进行了测量,记录电压、电流波形及磁滞回线如图4~图7所示。并对采样的电压、电流波形的数据结果与fluk434测的结果进行了比较,认为是正确的。
图4和图5分别为交流励磁时的电压电流波形及磁滞回线;图6和图7分别为交直流励磁时的电压电流波形及磁滞回线。由于电压电流的真实值相差太大,图上坐标均采用百分值显示。
磁通随时间正弦变化,磁饱和的非线性导致磁化电流成为与磁通同相位的尖顶波;磁路饱和越严重,磁化电流的波形越尖,畸变越严重。当有直流励磁电流存在时,激鼓电流已经严重畸变,关于x轴出现了严重不对称。
5 结语
通过设计和实验结果证明,该新型智能测磁仪具有以下特点:
(1)采用高精度16位采样模块ADS8364,使得采样精度大大提高,减小了零飘和测量误差。
(2)结构简洁,具有较强的抗干扰能力,测量结果受外部环境的影响小。
(3)操作简单、功能齐全、使用方便,下位机本身就是一个完整的测量仪器,再配以上位机软件,能够通过图形更加直观地反映测量结果。
(4)采用比较成熟的算法及数字信号处理技术,保证了程序运行的可靠性及计算结果的准确性。
(5)不仅能够测量交流励磁回路,对于励磁回路中含有直流分量的磁路也能准确地测量。
本文将ADS8364与TMS320LF2407相结合,设计开发了新型智能测磁仪,该系统采样精度高,速度快,并可同时采集多路信号,具有广泛的实用价值。
- 基于ADS8364的数据采集系统设计(10-01)
- 稳定低噪声放大器中晶体管工作点的设计方法(下)(11-20)
- 24位高精度模数转换器ADSl258的原理应用(11-28)
- 用ADS实现一个2.38GHz全集成化低噪声放大器设计(04-26)
- 发夹型滤波器的设计(10-23)