微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 模拟信号设计注意事项

模拟信号设计注意事项

时间:09-21 来源:电子产品世界 点击:

入信号,以适应ADC的范围,从而在一个较小的范围实现更多位数。例如,先前讨论过的10mV测量范围,使用一个通常有0 + / - 1V范围的ADC,用户可以使用增益放大器实现接近100倍的信号放大。

        当ADC测量1V的动态范围时,一个20-bit分辨率的ADC看到的电压最小是1uV。当用增益来提高范围时,增益也会放大噪声,使它变大有可能会影响ADC的测量。这种噪声影响了ADC在这个增益设定中可以提供的可用位数目。因此,我们必须根据所需增益设置选择最佳ADC分辨率。

        通常用于测量测压元件输出的是Delta Sigma (DelSig) ADC和低通滤波器。一些DelSig ADC,例如赛普拉斯PSoC3和PSoC5器件包含的,他们可以在Delta Sigma调制器本身增加增益。这种情况下,ADC上增益的影响将会改变ADC的输入范围从0 + / - 1.024V 到0+ / -0.512V。因此,我们可以在ADC调制器本身达到更高增益。这样做还具有冗余优势。当我们在ADC调制器增加增益时,就可以减少ADC带宽。这对于传感器测量来说不是重点,这是由于传感器更新速率要小得多。然而,减少带宽是一种优势,因为它用作低通滤波器,不允许噪声进入系统。

        测压元件接口另一个主要问题是增益误差,因为输出信号范围依赖于激励电压。在测量中,激励电压的一个很小变化都可以引起类似比例的增益误差。如果信号测量和激励电压比率相反,我们就能避免这些。可以通过两种方法实现:

1)我们可以分别测量信号与激励电压,然后计算出比率,从而得出增益误差。然而,这种方法需要在两个信号之间的ADC复用。另一个问题是我们测量的信号幅度是10mV范围,激励磁电压是伏特级的。这将意味着动态改变增益设置和ADC范围参数,在大多数模拟系统中很有可能是不明智的。

2)另一种实现方式是把参考连接到ADC本身。一般ADC都有一个参考引脚,连接到一个外部参考。ADC的每次测量都会关联到参考。因此,如果我们提供激励电压或它的派生值作为参考连接到ADC,我们就能得到信号的比率测量。

 
Figure-5:测压元件接口电路

数字滤波

        我们讨论了模拟信号链中避免噪声和其他误差源的几种方式。获得无噪声输出的最后阶段之一是可以使用固件数学滤波器来平衡噪声。简单的实现方式是移动平均滤波器,使用队列,输入值在一侧保持数据流,旧数据从另一侧排队下降。在任何给定的时间内,滤波器的输出是队列中所有单元的平均值。

 
图6:移动平均滤波

        移动平均滤波是一种最简单而又最有效的滤波器,可以在测量系统中实现更高的噪声抑制。缺点是有一个恒定的延迟,它和使用的队列深度成正比。这就意味着在输出端,n个单元移动平均滤波就要占用n个周期来反映出来。如果有较大的变化并且输出反应较慢就可能会有误解。这种情况可以通过变化时使用阈值条件检查来避免。在某一特定时间,如果输入变化超过一个阈值,整个滤波器重新启动,新的数据拷贝到滤波器和输出,从而减少了对较大变化的延迟。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top