微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一种优化便携式设备的电源系统

一种优化便携式设备的电源系统

时间:10-30 来源:互联网 点击:

越接近输出电压,效率越高。在电池放电过程中,有20%的工作时间平均效率约为55%,有60%的工作时间平均效率为64%,另有20%的工作时间平均效率为77%。而对于LDO直接连接到电池的电路,整个工作时间的平均效率为65%。

  情形2:使用ADP2108降压型稳压器和ADP170 LDO完成二级电压转换(见图2)。无论电池电压为多少,降压稳压器的输出电压均保持在2.5V。因而,LDO效率恒等于(2.3/2.5)×100%=92%。可使用Analog Buck Designer工具来计算ADP2108的效率。

  在输入电压范围内和300mA负载电流下,ADP2108的效率平均在90%以上。因此,该系统的效率(ηeff)=(ηDC×ηLDO)×100%=(0.9×0.92)×100%=83%。使用降压型稳压器和LDO可将系统效率从56%提高到83%,比简单LDO提高了28%。如果把这种节能技术应用到具有多个电源轨的便携式系统中,由于提高了各个负载的效率,整个系统的效率将会相应提高,并大大延长电池的续航时间。

  即使不考虑电池续航时间,LDO的功耗仍是一个问题。未提供给负载的功率在LDO中以散热的形式耗散掉。耗散掉的功率估计为:PD=(VIN-VOUT)×IOUT。对情形1的最坏情况,Vin=4.2V,PD=570mW。这意味着当把充满电的电池连接到LDO时,超过0.5W的功率以散热形式浪费掉,并导致便携式设备温度上升。如果设计人员使用这种技术来实现系统中的所有电源,设备将很快耗尽电池电能,尽管在冬天它可能是非常不错的暖手器。

  结语

  综上所述,系统架构师可通过为应用选择最合适的系统电压、使用恰当的电源元件并通过使电源系统的所有元件协同工作来降低电池消耗。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top