电力电缆局部放电在线检测技术
2电缆局部放电单端定位法
在检测到电缆局放时,如果能对局部放电源进行定位,那么局部放电活动测量的实效性就会大大提高。当局部放电发生时,局放脉冲从放电点向电缆两侧传播(平均速度约150-160m/μs)。首先到达测量端的脉冲是直接向该方向传播的脉冲(直达脉冲),而完成局部放电定位,还要测量向反方向传播后被反射回来的脉冲(反射脉冲),如图4所示:
图4:“单端”电缆局部放电定位方法
理想状态下,如果直达脉冲和反射脉冲都能被识别,就可很容易地确定局部放电位置。即计算两个脉冲的时间差(ΔT),就可确定局部放电位置。但在实际应用中,使用这种简单的单端测量方法,很难实现局放点的定位。这是由于反射的脉冲太弱,或存在其它反射脉冲、噪音以及波形失真带来的干扰。因此,如果第二个脉冲(反射脉冲)能够明显强于噪音信号,定位就会容易得多。
3利用同步收发仪进行电缆局部放电双端定位
在电缆局放定位过程中使用同步收发仪,为高压电缆局部放电的定位提供了一种更准确和可靠的方法,可以克服单端定位的许多问题,如:
?长电缆的信号衰减过大,会降低反射脉冲的大小,从而导致反射脉冲淹没在“背景噪音”中。
?存在诸如来自馈线电动机噪音的干扰,局放波形难以读取。
?T形连接的电缆或带接头的电缆会导致衰减和反射。
?环网柜中的其它电缆会导致信号衰减和(部分)脉冲反射。
?电缆远端阻抗没有明显变化。
在测量时,为了增强反射脉冲,使之能够从背景噪音中突显出来,可以使用同步收发仪。如图4所示,该仪器包括一套放电触发单元和一个脉冲发生器,其基本工作原理是利用放电触发单元探测到一个小的脉冲后,再利用脉冲发生器注入一个很大的脉冲,这样便可确保在电缆的测量端能够检测到一个“反射”的脉冲。
图4 同步收发仪的触发单元和脉冲发生器
图 5 利用同步收发仪定位电缆局放示意图
图5所示为使用同步收发仪进行电缆局放定位的示意图,这里利用高频电流传感器作为探测和发射传感器,此系统可用于5km长的电缆。当触发器在上升边沿触发时,设备的精密度决定了局部放电脉冲上升时间的精度。
图6有无同步收发仪定位局放脉冲的效果
图6所示分别为使用和不使用同步收发仪两种情况下进行电缆局部放电定位的结果。图中,使用同步收发仪时,定位的结果是:局部放电发生的地方比较靠近测量端,可以明显地看到很大的同步脉冲。这里电缆的长度为750米左右。
用于局部放电定位的同步收发仪由电池供电,从而使得在电缆远端没有主电源的情况下,仍可以定位局放,在现场非常适用。这种定位方法非常简单,只要局部放电脉冲清晰,且使用同步收发仪时方法规范,定位结果就会清晰明确。
4电缆局放定位英国应用案例分析
本例中,局部放电定位采用OSM Longshot系统,使用同步收发仪进行局放点的定位,并通过PDMap?软件做数据分析。
英国配电公司,一次(132kV/33kV)变电站拥有一套IPEC公司OSM-F64固定式局放检测仪,安装于2002年7月。鉴于其中的14个开关柜及其馈线电缆在系统中所处的重要位置,并且需要向曼彻斯特联邦运动会提供电力,因此使用上述仪器对其进行了连续的监测。在2003年4月29日,OSM监视器向客户和IPEC公司发出了一个预警:在皇后公园/东地球场电路中存在过量的局放活动。IPEC公司的工程技术人员使用OSM Longshot?局放现场测试仪如图7所示,对现场进行了检查,通过测试证实了被怀疑的电路中存在高等级的放电现象,并使用PDMap?软件和便携式同步收发仪进行了检测,从而查出放电的源头。
图7:OSM-Longshot 电缆局部放电在线检测系统
从检测到放电的线路图8上看,一条T形电缆分别与皇后公园变电站和东地球场变电站的两个变压器相连。为了定位放电源的位置,需要使用PD Map?在线定位系统软件。连接有HFCT传感器的便携式收发仪被放置在斯图亚特大街(Stuart St)变电站皇后公园的电缆上。检测系统被设置为检测到放电信号时,便向接地线发射一个大的(100V)高频脉冲。通过测量收发仪信号和其来自电缆远端反射信号之间的时间差,电缆的长度得以确定,并可根据客户提供的电缆路径图对电缆的长度进行核对。然后分别在远处皇后公园和东地球场端,使用HFCT传感器再次进行测试,测量放电信号和接地线中收发仪信号之间的时间间隔。随之,在与皇后公园连接的那条电缆上检测到了2个放电点,且两个点都在电缆的红相上。
图 8 皇后公园电缆上的放电点
利用PD Map?软件对测试结果进行分析,如图9所示。所测的局放量峰值分别约为6,000 pC和9,000 pC。这里需要注意的是,由于电缆的浪涌阻抗,在沿电
模拟电路 模拟芯片 德州仪器 放大器 ADI 模拟电子 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 利用GM6801实现智能快速充电器设计(11-20)