常见模拟音频接口介绍
号传输到接收端时,反相器再将原来倒相的信号进行180度的反相,这样的结果可以看作是原正弦信号反相,并且 干扰信号也被反相。此时,再将两个受到干扰的信号进行耦合,会出现什么状况呢?很明显,由于作了180度的反相,因此,两个信号间的干扰信号分量正好可以相互抵消,而接收端经过处理的信号也能尽可能的保持原来的波形。当然,这是最理想的状态。
说到这里,我们可以知道真正的平衡输入输出应该有两点需要特别谨慎的对待,一是时间问题、二是分解后的两个信号的传输过程的电路问题。如果时间问题得不到很好的解决,即其中一个信号的时间定义慢了或者快了,那么两个信号耦合时,两个原本应该一致的信号可能会出现重影现象,造成失真;而如果两个信号在传输过程中受到的扰动不是来自外部,而是传输电路内部,并且两路电路造成的影响并不一致,那么由于电路的差异性造成的干扰同样会产生新的失真。
基于以上两点,平衡输入输出在理论上是令人向往的,但是要实现尽可能的理想化,要付出的成本却相当高昂,对电路设计对生产工艺都有较高的要求。这也是为什么这样的电路一般在HiFi领域才能见到的原因了。
平衡模拟音频传输方式的基本原理
箱体上常见的模拟插座:
惠威 D1080MKII主箱接线夹与副箱接线夹
蝴蝶夹是有源音箱中常见的模拟信号传输接口,通常采用红黑两种颜色标注,两根线可以传输一个声道的信号,而有些箱子我们可以见到两对红黑蝴蝶夹接口,这是因为这类箱子采用的是电子分频设计,而电子分频音箱的特点是先分频后放大的原理,因此高低音必须单独分开输出,配线就必须相应的用到两对了。
接线柱在高端对箱上比较常见,接头型的音响线可以直接插入插座,而普通音响线也能通过旋钮与柱孔固定。由于接触面更大,结构更简单,因此其可靠性也更高。
结语:
此次应用我们介绍了多个模拟信号接口,相信大家现在对模拟接口已经比较了解了。其实模拟电子电路在目前的电气电路设计中依然占据着重要位置,我们目前也没有办法实现完全的数字化音频。并且虽然模拟信号容易受到干扰而产生失真和衰减,但是通过对传输方式的改进,在很大程度上我们也能克服这些缺点。
- 基于ISP1581型接口电路的USB2.0接口设计(01-18)
- TM1300 PCI-XIO口的UART和USB接口设计(01-17)
- PC机扩展RS-232接口(01-25)
- LVDS接口电路及设计(01-26)
- 基于RTL8019AS的串口与以太网接口转换器(04-29)
- 串行及并行A/D转换器在高速数据采集中的采样差别性分析(05-19)