微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 于锁相放大器的万能试验机采集系统研制

于锁相放大器的万能试验机采集系统研制

时间:05-28 来源:互联网 点击:

光电编码器的分辨率与每转输出的脉冲数有关,脉冲数越多,分辨率越高。而引入倍频技术,对编码器输出的信号进行细分,将进一步提高测量精度。常规的实现倍频的方法是,通过逻辑电路进行处理,或者是利用单片机经过一系列处理后实现。现在,市场上也出现了不少专门完成编码器信号处理的芯片,直接输出数字信号,比如奎克半导体的QA744808芯片。这些方法,要么成本高,要么处理相对复杂。本系统采用STM8S单片自带的编码器接口模式功能,实现了一种简单的编码器信号读取。近几年雕刚推出的STM8、SWM32系列的单片机,专门为电机控制加入了特别的设计,提高了电机处理能力,也加入了在电机控制中要用到的编码器接口。增量编码器可与MCU直接连接而无需外部接口电路。
从A、B两路信号可以看出,一个脉冲周期里面,两路信号共发生了4次变化,如果能在两信号上升沿与下降沿都进行计数,就可以在一个周期里对编码器计数4次,从而实现了4倍频的目的。如图5所示,在STM8S中,选择双边沿计数模式,就可以轻松实现4倍频的功能,同时在发生输入抖动时,不会引起计数器加减变化,能有效抑制干扰。

STM8S的编码器接口模式存在于TIM1中,在硬件连接上,编码器差分信号经高速光耦光电隔离,同时进行电平转化后,输入TIM1的TIM1_ CB1,TIM1_CH2引脚。通过配置TIM1_SMCR寄存器,使计数器同时在TI1,TI2边沿计数。根据两个输入信号的跳变顺序,产生计数脉冲和方向信号。在计数器溢出时,根据方向,对数值进行累计,可实现很大的量程。同时可以通过STM8S的一个引脚与STM32相连,通过中断信号,对编码器计数进行清零。
在本系统中,设计了3路的编码器信号采集电路。通过IIC总线与STM32相连。在此使用了20引脚的STM8S103,成本菲常低,同时也结构简单,是一种不错的选择。

3 结论
本万能材料试验机系统设计中,实现了几个基本模块的功能,完成了一种性价比高的解决方案。在采集系统的核心采用混合式的锁相放大器来实现,同时运用数字处理,在速度和精度上得到了保证。并且,该方案对处理器行性能要求不高,从而用STM32处理器实现了锁相放大器的低成本应用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top