红外图像的边缘提取
时间:09-10
来源:互联网
点击:
0。即保留幅值局部变化最大的点,细化幅值图像中的屋脊带。
2.4 双阈值检测及边缘连接
由于图像中噪声和边缘都属于高频部分,经过非极大值抑制处理过的边缘图像仍然有很大一部分是属于噪声的伪边缘点,因此必须进行去噪处理[7]。本文采用高低双阈值的方法实现此去噪过程。设定高、低两个阈值,高阈值处理后的边缘图像能去除大部分噪声,得到尺寸较大的清晰边缘,但同时也损失了一些有用的细节边缘信息;低阈值去噪处理后图像保留了较多的信息,能保留细微边缘,但是产生了较多的伪边缘。经过双阈值化处理之后能够得到两幅不同特征二值边缘图像。以高阈值边缘图像为基础,以低阈值边缘图像为补充进行边缘连接,实现最终的图像边缘提取。
3 实验结果
Sobel算法边缘提取效果较差,目标边缘断裂现象较为严重,且对噪声较为敏感;形态学边缘提取虽然提取目标的边缘较为完整,但产生大量了伪边缘;用本文算法提取边缘,目标边缘提取效果较为理想,且对噪声不敏感,提取的伪边缘较少(图像周围的伪边缘是由于图像在平移过程中产生的,不影响图像的后续处理)。
实验结果显示,基于人眼微动视觉成像机理的边缘提取算法能够快速、准确地提取红外图像的边缘,且能够较好地抑制伪边缘的产生,取得很好的边缘提取效果。
- 基于红外遥控的数字调节开关电源设计与实现(10-24)
- 基于单片机技术的室内报警器的设计(02-16)
- 毫米波雷达前端系统设计(05-03)
- 一种高性能红外信号检测开关的设计与实现(05-27)
- 可控硅在红外遥控开关中的应用及工作原理(01-07)
- 利用红外线传感器实现接近感应应用(03-11)