工程师制作:耳机放大器制作历程全解一
起来这些消气剂就像是一层附着在玻璃壳体顶部内侧的银镜。
在实际的电子管电路中间,由于电子管和变压器都会发出很多的热量,这也会影响到元件的状态,所以电子管设备往往在开机一段时间之后才会进入完全稳定的状态——就放大器而言就是稳定后声音才会最好。
简单说了说原理以后,我们就开始考虑具体的电路。
电源方面决定采用传统的电子管全波整流加CLC滤波的方式。电子管全波整流是指用一支双二极管来把两个极性相反的正弦交流电压变成直流电;而后面的CLC滤波是指使用并联的电容和串连的铁芯电感(即扼流圈)来将直流电压的纹波尽量抹平。
由于用于推动耳机的电子管放大器不需要太大的输出功率,所以电路里使用两级放大就足够了,也就是前级电压放大和后级功率放大,而无需像大功率放大器一样需要在电压放大级和功率输出级之间设置一个推动级。考虑到实用价值,前级电压放大电路通常有单端Single-End和SRPP(Shunt Regulator Pull-Push并联调整推挽)两种形式,单端放大只使用一个三极管,结构简单,音色也最纯真,中频尤其优美;SRPP形式的高频细致,但低频量感稍欠,且工作时会产生频率非常低的纹波,不用直流伺服电路加以控制的话不适于通过直接耦合输出给后级,考虑到具体情况,所以我们采用了单端形式。后级功率放大电路简单来说可以分为单端和推挽,由于不需要输出太大功率,我们也采用了单端形式。
电子管的灯丝供电可以采用交流和直流两种方式。交流供电的好处是声音动态表现好、对电子管寿命影响较小,缺点是噪音相对较大;直流供电的特点则几乎正好与交流供电相反。考虑到耳机放大器的电压放大倍数不大,噪音问题也不会太大,我们决定采用交流灯丝供电。
两级放大电路之间的信号耦合方式通常有直接耦合、电容耦合和变压器耦合三种。直接耦合就是用导线直接连通前后两级,信号可以直接通过而没有损耗,但由于导线两端没有电位差,所以必须把前后两级电子管的各极直流电位都提高,以使前面电子管的屏极和后面电子管的栅极直流电位相等,考虑到电源成本和安全因素,这次最终没有采用直接耦合。电容耦合可以用电容来隔离直流,使各级的工作点(电子管各极之间的直流电位差)得以保持互相独立,但电容会影响到细节和低频的表现,综合考虑后这次采用了电容耦合。变压器耦合的原理与电容耦合类似,虽然变压器耦合的效果可以非常好,但是传输变压器比较难以买到而且价格昂贵,也只好放弃了。
单端功率输出级的输出方式可以分为阴极输出和变压器输出两种方案。阴极输出方案由于不带输出变压器,所以也称为OTL,阴极输出的声音更加透明,声场更好,而且成本可以做得较低;但由于电子管输出阻抗高、工作电流有限,所以单个电子管阴极的输出推动低阻抗负载的能力有限,虽然通过多管并联可以改善推动能力,但是并联输出需要尽量精确的配对,这是我们的财力和条件都难以企及的。反观变压器输出方案,由于输出变压器的阻抗匹配作用,输出级电路所“看到”的是变压器初级的高输入阻抗而不是负载的低输入阻抗,所以推动低阻抗负载的表现较好。同时变压器由于线圈的电感、磁体的磁滞和铁芯钢片的磁传递等作用而具有非常特别的自身音色。变压器输出方式是不能空载工作的,也就是一定要先接上负载再开机。高品质输出变压器的材料和工艺使得其造价也比较高。由于这次是为高档的低阻抗耳机而设计,再回想起麦景图的优美表现,为了打上这个牙祭,笔者也狠狠心选择了输出变压器。
还有就是负反馈。所谓负反馈就是将放大器输出的信号经过反相后送回放大器的输入端。对于是否采用负反馈众说纷纭意见不一,但是负反馈的优点和缺点是有共识的:负反馈能对放大器提高稳定性、降低非线性失真、扩展通频带、提高输入阻抗和降低输出阻抗;但也会造成瞬态互调失真和留下自激的可能。考虑到放大电路只有两级,信号延迟不大,瞬态互调失真也不会严重,同时考虑到稳定性和输出阻抗,所以这里采用了少量的负反馈。
由于其他元件参数需要先确定电子管和输出变压器,所以我们把整个电路的具体参数放到选定器件之后。
- 《讲述.电子人》:电子工程师支教路,过程远比结果重要(02-26)
- 满足所有设计的电量计(07-12)
- 想在理工科领域有所成就?看看TI工程师怎么说(08-29)
- 工程师,您所不知道78%硬件失效的罪魁祸首(02-05)
- 教你成为优秀的模拟集成电路设计工程师(02-26)
- 模拟设计工程师的忧虑:经验知识重要吗?(02-27)