微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 利用新一代硅调谐器IC设计主流电视

利用新一代硅调谐器IC设计主流电视

时间:11-17 来源:互联网 点击:

视调谐器IC不能满足整个市场需要。幸运的是当前有大量可用的调谐器IC架构,满足了这些多变的平台需要。现在的挑战是如何为你的应用选择合适的装置。

  频道接收:获得清晰电视广播接收的关键是灵敏度和选择性,而这些特性又基于低噪声系数(NF)、高射频前端线性度和高质量RF前端滤波器。低噪声系数意味着RF前端仅允许输入信号中增加极微小噪音,而高灵敏度意味着有足够大的视频信号与噪声比(VSNR),甚至是微弱的输入信号也能正确的接收广播。而电视调谐器总是需要接收到一个混有其他信号的广播,这就是为什么硅调谐器IC的选择性对于清晰接收是必不可少的,亦即阻塞或排除临近干扰信道内容的能力。为了实现具有成本效益解决方案的高选择性,硅调谐器IC在RF前端需要高线性度和高品质滤波器。如图3所示,硅电视调谐器IC具有高灵敏度和优异的选择性性能,从而可在真实环境下接收到更多频道。

  

  图3:Si21x6电视调谐器系列产品展示出优异的VSNR性能

  (Si21x6 VSNR用红线表示,其他产品VSNR用蓝线表示)

  现场测试:主流电视品牌厂商提供符合官方广播标准的产品,但也必须解决许多现实中的其他问题,否则将面临消费者的投诉和昂贵的产品召回成本。意外的广播环境和异常可能比你想象的更频繁,特别是在不同区域标准之间,情况将更为复杂。例如,在欧洲许多模拟和数字标准需要能够通过一台电视跨国界接收。为了克服这些非标准的接收环境,电视调谐器和解调器必须首先进行检测,然后对非标准的传输进行补偿,这些条件需要根据现场环境以及通过特别的现场测试而优化。如果没有硅电视调谐器灵活的控制和配置能力,以上的困难将无法克服。电视制造商对电视调谐器进行严格的现场测试,强调既要满足标准性能也要符合不规则广播条件下的性能要求。针对成本敏感区域市场,可能会选择较低成本的电视调谐器,而面向更广阔出口市场的电视则需要更可靠的全球性能。

  灵活架构降低成本 :选择更好的电视调谐器架构对于iDTV和STB供应商来说已经成为积极的发展策略,目前已有的一些硅调谐器IC型号可以满足iDTV和STB平台特殊结构要求。先进的电视和机顶盒平台有三个主要的电路功能:硅电视调谐器(见图4),解调器和音/视频以及图形处理SoC。调谐器的输出信号驱动解调器的输入,而解调器的输出信号驱动音/视频及图像处理器SoC的输入。

  

  图4:先进的硅电视调谐器架构示例

  电视和机顶盒平台对模拟和数字调谐器有多种需求。例如,简单的窄带有线机顶盒可能需要单一的数字调谐器;相反,主流的iDTV可能需要支持 模拟和数字地面广播以及有线输入源,对于大电视品牌,调谐器必须支持所有模拟和数字全球传输标准。电视调谐器IC现在可支持多种架构配置,如仅数字、仅多通道数字、模拟和数字调谐器、带模拟电视解调器的模拟和数字调谐器,以及集成调谐器和解调器的多种接收器配置。

  大多数现代电视至少支持一个调谐器,能够同时调谐模拟和数字通道,而解调器则需要单独对应模拟和数字通道。为了支持不同的数字解调器标准,甚至可以在同一平台上有多个解调器,如DVB-T和DVB-T2。DTMB(中国新的地面数字电视广播标准)和DVB-T2(第二代欧洲更高密度数字地面电视广播传输标准)比ATSC(北美)和DVB-T(欧洲和许多其他地区数字地面广播标准)更加复杂。对于DVB-S2、DVB-C2和DVB - T2标准,数字解调器都是集成在单一IC中。简单的解调器可以集成在音/视频处理和图形SoC中,也可以与其他复杂的数字解调器联合使用。

  机顶盒支持电缆输入,并在某些情况下也支持广播天线输入。不像电视,许多机顶盒平台使用的SoC通常没有模拟电视(ATV)解调器,不适合模拟广播接收。在这种情况下,如果机顶盒需要这类解调器,模拟电视地面广播解调器可以与SoC搭配使用。
现实情况中,当出现许多异常传输时,NTSC、PAL和SECAM的模拟电视解调器会表现得很差。其实,模拟解调器的性能水平高度依赖于之前设计所取得的经验,现在这方面的经验被集中在运行硅电视调谐器IC和解调器的专门控制固件中。考虑到调谐器、解调器和图像处理SoC之间相互作用和影响,电视制造商必须进行特别的现场测试去验证特殊的调谐器、解调器和SoC组合。这就意味着,即使SoC集成了他自己的模拟电视解调器,具有高性能模拟电视解调器的调谐器也是首选。关键问题在于设计人员需要了解哪种解调器已经在相关的电视或机顶盒目标市场进行了足够的现场测试和使用。如果对于特定的调谐器/解调器组合现场测试还没有完成,则可能需要使用测试较为彻底的调谐器/解调器组合来满足开发时间和成本目标。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top