高温电子设备对设计和可靠性带来挑战
作为高温应用中两种适当的器件进行演示。演示采用了一个小型电烤箱,带有一个旋转组件,上方装有高温PCB,且能够连续工作。烤箱中的加热元件位于顶部附近。这种设计会在烤箱内产生较大的温度梯度。旋转机制用于同时测量温度和位置的实验之中。
AD8229负责调理来自K型热电偶的信号,热电偶在烤箱内不断旋转。热电偶探针伸出PCB约6英寸,目的是为了更好地测量烤箱温度变化。同时,ADXL206负责测量旋转角度。三个信号(温度梯度、x轴加速度和y轴加速度)通过一个额定值达到高温工作条件的滑环(旋转连接器)来传送。滑环可以保持与非旋转线缆的连接,线缆连接至烤箱外的数据采集电路板。由于“冷结点”位于烤箱内部,可以采用附加热电偶为内部温度提供静态参考。AD8495热电偶放大器(也位于烤箱外)采用其集成冷结补偿来调理附加热电偶的信号。
烤箱内的电路板位于中心附近的旋转组件上,该位置的温度约为175°C。电路板结构采用聚酰亚胺材料。铜层上的走线采用0.020英寸的最小宽度,以改进铜与预浸材料的连接(图14)。器件采用标准HMP焊料(5/93.5/1.5锡/铅/银)连接,并采用特氟龙镀膜线连接电路板和滑环。
图14.安装器件的高温PCB
所有的精密器件都采用通孔安装。仪表放大器的增益通过一个25 ppm/°C的金属薄膜电阻来设置。放大器在高增益下工作,因此,放大器到增益电阻的走线长度应尽可能短,以将铜电阻降至最低(4000 ppm/°C TC)。热电偶和放大器的接口位于电路板中心,目的是在旋转时维持温度稳定。热电偶引脚应尽可能靠近,以消除结点上无用的热电动势效应。
高温钽电容和C0G/NP0电容可对电源进行去耦,并用作加速度计输出的滤波器。
计算机处理四个不同来源的数据:旋转角度(矩形x和y分量)、内部温度梯度和参考温度。综合上述各项测量结果即可绘制出温度梯度(图15)。分析结果显示,温度变化达到25°C。正如预期,最高温在烤箱后壁顶部旁边的加热元件附近。由于存在自然对流,烤箱顶部是烤箱内部第二热的区域。最低温在热电偶与加热元件位置相反时测得。
该实验以简化形式表明,在恶劣环境下工作时,记录系统中集成的高温器件如何提取有价值信息。
图15.高温演示图
结论
许多(包括成熟与新兴)应用都需要能够在极端高温环境下工作的器件。过去,由于缺少额定值能够在此类恶劣环境下工作的器件,设计这种可靠的系统十分困难。而现在,能够在这些环境下工作的IC和支持器件都已出现,既节省了工程设计时间,又降低了失败风险。采用这种新技术并遵照高温设计方法,就能使高性能系统在与之前可行环境相比更加极端的环境下可靠工作。
我们邀请您在 中文技术论坛上的 ADI社区对高温电子器件发表评论.
参考文献
1A.E. I. Mehdi and Karimi K.J Brockschmidt, “A Case for High Temperature Electronics for Aerospace,” IMAPS Int’l. Conference on High Temperature Electronics (HiTEC), May 2006.
2R.A Normann, First High-Temperature Electronics Products Survey 2005, Sandia National Laboratories Sandia Report SAND2006-1580, April 2006.
3K.C Reinhardt and M. A. Marciniak, “Wide-Bandgap Power Electronics for the More Electric Aircraft,” in Proc. 3rd Int. High-Temperature Electronics Conf., Albuquerque, NM, June 1996, pp. I.9–I.15.
4B. Blalock, C Huque, L. Tolbert, M. Su, S. Islam, and R. Vijayaraghavan, “Silicon-on-Insulator Based High Temperature Electronics for Automotive Applications,” 2008 IEEE International Symposium on Industrial Electronics.
5J. L. Evans, J. R. Thompson, M. Christopher, P. Jacobsen, and R.W Johnson, “The Changing Automotive Environment: High-Temperature Electronics,” IEEE Trans. on Electronics Packaging Manufacturing, Vol. 27, No. 3, pp. 164-176, July 2004.
6E.R Hnatek, “Section 5: Thermal Management,” Practical Reliability of Electronic Equipment and Products, New York, NY: CRC Press, 2002.
7National Research Council, “Appendix A: Silicon as a High-Temperature Material,” Materials for High-Temperature Semiconductor Devices, Washington, DC: The National Academies Press, 1995.
8F.P McCluskey, R. Grzybowski, and T. Podlesak, High Temperature Electronics, CRC Press, New York, 1997.
9“Properties of Alloys of Multicore Solder Wires,” Technical Data Sheet, Henkel Technologies, August 2007.
10“Power Dissipation Considerations in High Precision Vishay Sfernice Thin Film Chips Resistors and Arrays (P, PRA, etc.) (High Temperature Applications),” Vishay Application Note, Doc. Number: 53047, Revision: March 2010.
11http://www.analog.com/hightemp.
高温 相关文章:
- 提高用于高温环境和电负载的薄膜电阻的性能(10-01)
- 磷酸铁锂电池的节能减排应用(06-20)
- 多晶硅薄膜的制备方法设计(11-26)
- 电容式高温压力传感器设计及其仿真(12-15)
- 高温系统设计的考虑因素(05-13)
- 12位串行A/D转换器MAX187的应用(10-06)