微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 后锂电池时代:哪种电池技术会脱颖而出(五)

后锂电池时代:哪种电池技术会脱颖而出(五)

时间:10-14 来源:互联网 点击:

固溶体类正极材料改善容量降低现象

  通过采用目前主流的锂氧化物而非有机化合物的正极材料实现250mAh/g以上的比容量,而且电压可提高到5V左右的固溶体类正极材料(Li2MnO3-LiMO2)的发表件数也急剧增加。该材料在充电前为锂层与锰等过渡金属层各自分开的层状构造,进行初期充电后,过渡金属向锂层内移动,变为尖晶石构造。关于高容量的发现,除了锰等的氧化还原反应外,还发现了氧相关的电荷补偿。

  不过,将充电电压提高到理论值以上容量的4.8V左右后,存在反复充放电时容量大幅降低的课题。针对该课题,日产汽车等的研发小组宣布,通过分阶段提高充电电压并同时实施电化学预处理,经过几十次充放电循环后仍可维持250mhA/g的容量。

  在本届电池研讨会上,神奈川大学和日产汽车的研发小组除电化学预处理外,还公布了氧化物表面修饰的效果。比如,通过采用Al2O3进行表面修饰,改善了50℃以上高温下的充放电循环特性注9)。50℃时未加修饰的样品在充放电25次后,容量维持率降到了83%。而进行了表面修饰的样品充放电40次后容量维持率仍为90%左右。

  电压化将能量密度提高至200Wh/kg以上

  在推进固溶体类正极材料基础研究的过程中,作为更接近实用水平的5V正极材料开发的是镍锰(Ni-Mn)类锂氧化物。虽然本届电池研讨会没有发表相关内容,不过在2012年10月举行的电气化学相关国际学会“PRiME2012”上,NEC采用将尖晶石型锰酸锂(LiMn2O4)的一部分换成镍的Li(Ni0.5Mn1.5)O4试制了单元并进行了发表。

  与原来的LiMn2O4相比电压可提高0.7V左右,因此单元的能量密度可由原来的约150Wh/kg提高约30%达到200Wh/kg以上。

  NEC除正极材料外,还新开发了耐高电压的含氟溶剂,抑制了在正极材料和电解液的界面产生的氧化分解。在组合使用Li(Ni0.5Mn1.54和石墨的单元试验中,在20℃的温度下进行500次充放电循环试验后,可维持初期容量的约80%。另外,在45℃的高温下进行相同的试验后,确保了约60%的容量维持率。

  另一方面,富士重工业着眼于组合使用Li(Ni0.5Mn1.54和石墨的单元在初期充电时的不可逆容量的抑制注10)。该公司以前就利用预掺杂锂离子电容器等采用的锂的技术。以前的预掺杂技术是在负极封装锂箔,锂箔与石墨的电位差较小,掺杂需要较长时间。

  注10) 富士重工业以“采用预掺杂技术的锂离子充电电池的高能量密度化”为题发表了演讲[演讲序号:3C22]

  因此,富士重工业开发出了采用Li(Ni0.5Mn1.54时在正极侧封装锂箔,并预掺杂锂的技术。Li(Ni0.5Mn1.54的镍侧有锂,而锰侧无锂,利用镍侧与锰侧约2V的电位差可从正极侧掺杂锂。

  比较进行了预掺杂和未进行预掺杂的单元初期充放电容量发现,进行预掺杂后抵消了负极的不可逆容量,比容量提高27%(图15)。

  图15:从正极预掺杂锂

  富士重工业开发出了从正极预掺杂锂的技术。可以防止负极石墨的不可逆容量造成的容量降低。

  此外,富士重工业还与日本化学工业共同发表了将磷酸钒锂(Li3V2(PO4)3:以下称LVP)与高容量NCA(Li(Ni-Co-Al)O2)混合的LVP-NCA类正极材料注11)。

  注11) 富士重工业以“采用磷酸钒锂的高 容量高功率电池的开发”为题发表了演讲[演讲序号:3B16]

  富士重工业采用将LVP与NCA按重量比3:7混合的正极试制了17Ah的层压型单元(图16)。能量密度为190Wh/kg(373Wh/L),平均电压为3.64V,与仅采用NCA正极试制的单元具备基本相同的性能,同时大幅提高了输出特性。SOC较低时的输出特性尤为出色。富士重工业表示,通过改变混合比例,有望达到期望的输出特性。

  图16:混合LVP提高NCA类正极材料的特性

  富士重工业通过在NCA类正极材料中混合LVP,提高了输入输出特性。

  充放电循环特性方面,循环5000次后的容量维持率为LVP-NCA类70%,NCA类63%,通过混合LVP提高了寿命特性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top