人体接近传感器在ATM取款机监控中的应用
1. 概述
人体接近传感器又称无触点接近传感器,是理想的电子开关量传感器。当金属检测体接近传感器的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。它广泛地应用于机床、冶金、化工、轻纺和印刷等行业。在自动控制系统中可作为限位、计数、定位控制和自动保护环节。接近传感器具有使用寿命长、工作可靠、重复定位精度高、无机械磨损、无火花、无噪音、抗振能力强等特点。因此到目前为止,接近传感器的应用范围日益广泛,其自身的发展和创新的速度也是极其迅速。
人体接近传感器作为技防手段已逐步被人们认识和应用。为了更好地贯彻GB/T10488-1997人体接近传感器的国家标准顺利实施,使更多的人了解人体接近传感器的原理和应用,现结合南京远拓科技研制生产的人体接近传感器介绍一下有关人体接近传感器原理和应用的基本知识。
人体接近传感器在ATM取款机监控中的应用:
ATM专用人体接近传感器YTMW8631和人体活动监测器YT-EWS,一种用于检测人体接近的控制器件, 可准确探知附近人物的靠近,是目前作为报警和状态检测的最佳选择。传感部分对附件人物移动有很高的检测灵敏度,又对周围环境的声音信号抑制,具有很强的搞干扰能力,可广泛应用于ATM,保险等场合的防盗装置中,安装方便,可水平或垂直安装。对人体感应的灵敏度市连续可调的,这使得人体接近传感器可以适应于很多不同的场合。
广泛应用于金融工商、自助银行、ATM监控人体接近报警等。内部采用微电路芯片作程控处理,具有较高探测灵敏度和触发可靠性探测与控制两部分合二为一,守候功耗低,开关信号输出,直接触发报警录像,使用简便。
可性能特点:
(1)具有穿透墙壁和非金属门窗的功能,适用于银行ATM监控系统隐蔽式内置安装;
(2)探测人体接近距离远近可调,可调节半径为(约)0-5米;
(3)探测区域呈双扇形,覆盖空间范围大;
(4)对检测信号进行幅度和宽度双重比较,误报小;
(5)有较高的环境温度适应性能,在-20到50摄氏度均不影响检测灵敏度。
(6) 非接触探测。
(7) 不受温度、湿度、噪声、气流、尘埃、光线等影响,适合恶劣环境。
(8) 抗射频干扰能力强。
2. 远拓科技人体接近传感器的分类及结构
2.1两线制接近传感器
两线制接近传感器安装简单,接线方便;应用比较广泛,但却有残余电压和漏电流大的缺点。
2.2直流三线式
直流三线式接近传感器的输出型有NPN和PNP两种,70年代日本产品绝大多数是NPN输出,西欧各国NPN、PNP两种输出型都有。PNP输出接近传感器一般应用在PLC或计算机作为控制指令较多,NPN输出接近传感器用于控制直流继电器较多,在实际应用中要根据控制电路的特性进行选择其输出形式。
3 接近传感器的选型和检测
3.1
对于不同的材质的检测体和不同的检测距离,应选用不同类型的接近传感器,以使其在系统中具有高的性能价格比,为此在选型中应遵循以下原则:
3.1.1 当检测体为金属材料时,应选用高频振荡型接近传感器,该类型接近传感器对铁镍、A3钢类检测体检测最灵敏。对铝、黄铜和不锈钢类检测体,其检测灵敏度就低。
3.1.2 当检测体为非金属材料时,如;木材、纸张、塑料、玻璃和水等,应选用电容型接近传感器。
3.1.3 金属体和非金属要进行远距离检测和控制时,应选用光电型接近传感器或超声波型接近传感器。
我们来分析一下,录像触发的方式,现在的厂家很多用“移动侦测”此作为触发报警录像的典型方式,那么我们就简单分析一下,ATM柜员机大多数安装的位置都是面对大街,大街上人流,车流穿息不定,那么移动侦测在此,几乎就是一点作用没起,从而引起了大量的无效的垃圾录像文件,造成后果就是垃圾录像一大堆,查找很困难,硬盘长时间不停止工作加速其损坏。
下面我们就按一个交易量不错的ATM网点来说,按每个网点每天200笔交易量为例从上面的数据可以看出,通过移动侦测来作为录像触发的方式,无效录像文件比例是非常巨大的,调看所需录像非常之不方便,相反的通过人体活动监测器触发录像方式,几乎就杜绝了无效录像文件的产生,对于日后的调看录像,取证都是非常的方便。
远拓科技人体接近传感器的工作原理是什么?
① 人体接近传感器里有个高频率发送机,会使线圈发出高频磁场。
② 被测对象接近高频磁场会使检测对象表面产生涡电流,而涡电流又会引发方向相反的磁场。
③ 发送机受到涡电流引起的发磁场影响抵消而停止震
- 新型永磁同步电机控制芯片IRMCK203及其应用(01-16)
- AD698型LVDT信号调理电路的原理与应用(01-17)
- 带全速USB接口的PICl8F4550应用设计(04-12)
- 毫欧姆电阻在汽车电子系统中的应用(05-11)
- 利用双电机控制技术简化高能效电器设计(07-20)
- 为多路、多信号的快速扫描测量构建适当的数据采集系统(09-20)