声发射在某型飞机水平尾翼半轴状态监控中的应用
图6 撞击数hits对幅度的分布图 图7 撞击数hits对幅度的分布图
2.2 趋势分析
对试验数据进行了趋势分析。为减小噪声干扰的影响,取60~85dB之间的信号进行分析,见图8。
图8 幅度在60~85dB之间hits随时间的变化趋势图
取541~900飞行小时这段时间的信号进行分析,在图8中,541~623这段时间撞击数hits随时间变化不明显,从623飞行小时开始,撞击数hits随飞行试验的进行逐渐增加,hits到达3400不再升高而是在3200上下浮动,这很好的说明了疲劳裂纹的生长过程,分界点应该在623飞行小时左右。当然,准确确定裂纹开始发生的时间还有较大困难,但轴的状态在620飞行小时段已有明显改变,这是可以判断的。
3 参数滤波分析
3.1 参数滤波趋势分析
前边对水平尾翼的加载过程进行了分析,水平尾翼运动一个周期有两个加载过程:一个是从平衡位置到转动角度为 这个过程,另一个是水平尾翼回到平衡位置后,再从平衡位置到转动角度为 这个过程。下面给出监控半轴的第4通道hits对时间变化图,图9所示。在图9中标1的为从平衡位置到 采集到的峰值信号,标2的为从平衡位置到 采集到的峰值信号,根据Kaiser效应,裂纹扩展只有在最大载荷下才产生裂纹信号,所以裂纹信号的产生在标1的位置和标2位置,其它时间段大部分往往都是噪声信号,针对这种情况我们从其它参数特性来分析裂纹信号。
取775飞行小时的信号作为分析对象,根据前边的分析该时间段应该包含裂纹信号,由于半轴裂纹扩展信号是由单一材料产生的,且传递路径单一,所以从裂纹信号的参数上应该具有统计特性。对加载点的信号分析可发现峰值频率(peak frequency)为170kHz的信号出现的很多,且呈周期变化,而上升时间(rise time)一般都是22 ,所以 决定对峰值频率等于170kHz和上升时间为22 的信号进行统计分析 (参数滤波)。
图9 hits随时间的变化图 图10 参数滤波后hits随时间变化的趋势图
取381~900飞行小时这段时间的信号进行分析,对信号进行参数滤波,只保留峰值频率等于170kHz和上升时间为22 的信号,对信号进行趋势分析。图10为参数滤波后撞击数hits随时间变化图,在381~623飞行小时这段时间撞击数hits几乎为零,也就是说裂纹信号还没发生,在623飞行小时以后信号逐渐并跳跃性增加,而当达到759飞行小时时hits数量达到最大为1532个,从759飞行小时之后信号趋于稳定,这说明了在623~759飞行小时这段时间裂纹的扩展是一个从小到大的过程,而在759飞行小时以后是裂纹稳定扩展的过程,与图8中的变化趋势非常接近,图10更加精确地表示出裂纹信号的发展过程,623飞行小时为半轴裂纹萌生点,而759飞行小时为裂纹稳定扩展的分界点。 对于这样的一个结果可从其它方面进一步分析论证。
3.2 参数滤波后信号周期性和幅度分布分析
图11为半轴断口的图片,从图中发现了两个裂纹的萌生点上下对称,图12、图13分别对应上下萌生点的局部放大图,从图中发现裂纹是从上下两个焊点处开始萌生,从里向外的方向扩展的。为什么没有从一个点开裂呢?这主要是半轴除了焊点处为薄弱环节外,还有加载的原因引起的,最大载荷存在 和 两个极限位置处,而这两个作用点正好为半轴的上下两个对称的焊点处,这样存在两个裂纹萌生点也就不难解释了。裂纹信号在半轴上下处交替出现的,半轴运动一个周期,上下两处裂纹各扩展一次。根据上边的分析,具有峰值频率(peak frequency)为170kHz和上升时间(rise time)为22 参数特性的信号为裂纹信号,这些信号应该具有这样特征:
(1)信号周期形变化,一个加载周期内上下裂纹各开裂一次。
(2)信号的数量应各从小到大,且发生在载荷最大处。
(3)信号的幅度上分布应该向高幅度方向移动,当达到一定时间趋于稳定。
(4)从信号的频谱上看应该是一个宽频范围的信号,频谱应该非常接近,主峰频率应该一样,从波形上看应该和高韧性金属材料非常相似。
图14为峰值频率(peak frequency)为170kHz和上升时间(rise time)为22 的信号hits随时间变化图,处理的时间段为623~656飞行小时,图14、图15中(A)、(B)、(C)、(D)、(E)分别对应的时间点为623飞行小时、629飞行小时、643飞行小时、649飞行小时、656飞行小时,图14中(A)在某几个点出现的撞击hits,但这些信号都是在水平尾翼运行到 这个极限位置时产生的,此时正是加载最大处。而图14(B)在 最大加载点都出现了信号,由于采集十个周期信号,所以在十个时间点出现了信号,而这十个时间点对应水平尾翼运行到 的十个最大加载点(图中标记1处),这可以用kaiser效应得到很好的证实,这说明了在半轴的正上方焊点处开始出现疲劳损伤,随着试验的进行,从图14(C)发现在水平尾翼运行到 时最大加载点处有几个点也出现了信号(图中标2处),图14(D)中 时最大加载点处都出现了信号,这说明在半轴的正下方焊点处开始出现疲劳损伤,随着试验的进行,信号的数量开始逐步增大。这很好的说明了裂纹的生长过程。从图中我们可以得到半轴正上方(1断口对应处)的裂纹萌生时间应该在靠近623飞行小时处,半轴正下方(2断口对应处)的裂纹萌生时间应该靠近在643飞行小时处。图15对应图14中各个时间点的撞击hits对应幅度的分布图,从图15发现在随着试验的进行除了信号的信号数量变化外幅度分布向高幅度方向移动,这也很好的说明了裂纹发展过程,信号的幅度由小变大。
- 声发射仪的种类(11-27)
- 国外压力容器声发射检测现状(11-27)
- 国内压力容器声发射检测现状(11-27)
- 声发射信号分析技术(11-27)
- 声发射源多传感器数据融合识别技术(11-27)
- 耳声发射的定义、分类及作用(11-27)
