微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹28闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬儳顭烽弻锝夊箛椤掍焦鍎撻梺鎼炲妼閸婂潡寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磽娴e搫小闁告濞婂濠氭偄閾忓湱锛滈梺闈涚箳婵敻鎮橀崼銏㈢<闁绘劦鍓欓崝銈嗐亜椤撶姴鍘寸€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹
首页 > 硬件设计 > 模拟电路设计 > PCI总线和PCIE总线的差异

PCI总线和PCIE总线的差异

时间:12-04 来源:互联网 点击:

由于公司产品一直以X86架构为基础发展,在前几年中一直受到ASIC、NP架构等厂商的攻击,但是随着技术的发展,在PCI-E架构出现后,效率的瓶颈得以突破。

  最初PCI总线是32bit,33Mhz,这样带宽为133Mbps。

  接着因为在服务器领域传输要求Intel把总线位数提高到64,这样又出现了2种PCI总线,分别为64bit/33Mhz和64bit/66Mhz,当然带宽分别翻倍了,为266Mbps和533Mbps,这个比较通常的名称应该是pci-64,但这好像是intel自己做的,没有行业标准。

  稍后一段时间,在民用领域,单独开发出了AGP,32bit,66Mhz,这样带宽为266Mbps,再加上后来AGP2.0的2X和4X标准,最高4X的带宽高达1Gbps,但是这个只是为显卡设计的。

  同时服务器领域也没闲着,几家厂商联合制定了PCI-X,这个就是真正PCI下一代的工业标准了,其实也没什么新意,就是64bit,133Mhz版本的PCI,那这样带宽就为1Gbps,后来PCI-X 2.0,3.0又分别提升频率,经历过266Mhz,533Mhz,甚至1GMhz,各位自己算带宽吧,我乘法学的不好,这个带宽可以说是非常足够的了,不过这个时候PCI也面临一些问题:一方面是频率提高造成的并行信号串扰,另一方面是共享式总线造成的资源争用,总之也就是说虽然规格上去了,但实际效果可能跑不了这些指标。

  然后就是我们目前的明星pci-E了,这个标准应该是和pci-X同时出现的,但是由于当时用不到这么高带宽,并且不像pci-X一样兼容老pci板卡,所以一直没什么发展,直到最近民用领域显卡带宽又不够了,服务器领域对pci-X也觉得不爽了,pci-E才真正显出优势来,目前这个标准应该会替代agp和pci-X,成为民用和服务器两大领域的统一标准。

PCI-E标准的最大特点就是串行总线,和普通pci的区别类似于ide和sata的区别,具体说起来就比较麻烦了,简单来看指标的话,频率为2.5Ghz(这个恐怖,串行的好处,同样因为串行,位宽就没意义了,但是据说是什么8bit/10bit的传输),带宽 pci-E 1X单向传输250MBps,双向也就500了,同时pci-e的倍速最高可达16X,多少就自己乘吧,要注意的是pci-e不存在共享问题,也就是说挂在总线上的任何一个设备都会达到这个速度而不是所有设备带宽的总合。下面引用一篇文章的一段,感兴趣的自己看一下:

  在工作原理上,PCI Express与并行体系的PCI没有任何相似之处,它采用串行方式传输数据,而依靠高频率来获得高性能,因此PCI Express也一度被人称为“串行PCI”。由于串行传输不存在信号干扰,总线频率提升不受阻碍,PCI Express很顺利就达到2.5GHz的超高工作频率。其次,PCI Express采用全双工运作模式,最基本的PCI Express拥有4根传输线路,其中2线用于数据发送,2线用于数据接收,也就是发送数据和接收数据可以同时进行。相比之下,PCI总线和PCI-X总线在一个时钟周期内只能作单向数据传输,效率只有PCI Express的一半;加之PCI Express使用8b/10b编码的内嵌时钟技术,时钟信息被直接写入数据流中,这比PCI总线能更有效节省传输通道,提高传输效率。第三,PCI Express没有沿用传统的共享式结构,它采用点对点工作模式(Peer to Peer,也被简称为P2P),每个PCI Express设备都有自己的专用连接,这样就无需向整条总线申请带宽,避免多个设备争抢带宽的糟糕情形发生,而此种情况在共享架构的PCI系统中司空见惯。

  由于工作频率高达2.5GHz,最基本的PCI Express总线可提供的单向带宽便达到250MBps(2.5Gbps×1 B/8bit×8b/10b=250MBps),再考虑全双工运作,该总线的总带宽达到500MBps—这仅仅是最基本的PCI Express ×1模式。如果使用两个通道捆绑的×2模式,PCI Express便可提供1GBps的有效数据带宽。依此类推,PCI Express ×4、×8和×16模式的有效数据传输速率分别达到2GBps、4GBps和8GBps。这与PCI总线可怜的共享式133MBps速率形成极其鲜明的对比,更何况这些都还是每个PCI Express可独自占用的带宽。

  在PCI-E架构出现后,X86架构的产品有机会能和ASIC、NP架构的产品在性能上做抗衡,同时由于X86架构的产品在设计和开发上的便利性,产品竞争能力将进一步提高。

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top