无线传感网络(WSN)设计经典参考实例(一)
一、无线传感网络传输协议综述
1、无线传感网络协议栈的构成
无线传感器网络协议栈由物理层、数据链路层、网络层、传输层、应用层5 部分组成,和互联网协议栈的五层协议相对应。
无线传感网络协议栈
物理层:数据收集、采样、发送、接收,以及信号的调制解调;
数据链路层:媒体接入控制,网络节点间可靠通信链路的建立,为邻居节点提供可靠的通信通道;
网络层:发现和维护路由;
应用层:提供安全支持,实现密钥管理和安全组播;
传输层:为端到端的连接提供可靠的传输、流量控制、差错控制、QoS 等服务,即便是在OSI 模型中也只有该层是负责总体数据传输和控制的,因此非常重要。
2、传统协议的不足之处
传统IP 网络主要使用协议栈中传输层的UDP 和TCP 协议控制数据传输。UDP 协议是面向无连接的传输协议,不提供对数据包的流量控制及错误恢复;TCP 协议则提供了可靠的传输保证,如利用滑动窗口和AIMD 等机制进行拥塞控制,以及使用重传进行差错控制。但TCP 协议却不能直接用于WSN,主要原因如下:
(1) TCP 协议遵循端到端(end-to-end)的设计思想,数据包的传输控制任务被赋予网络的端节点上,中间节点只承担数据包的转发。而WSN 以数据为中心,中间节点可能会对相关数据进行在网处理(In-network Processing),即根据数据相关性对多个数据包内的信息进行综合处理,得到新的数据包发送给接收端,直接使用TCP 协议会导致将此视为丢包而引发重传。
(2) TCP 协议建立和释放连接的握手机制相对比较复杂,耗时较长,不利于传感器节点及时反馈被监测对象的相关信息。WSN 网络拓扑的动态变化也给TCP 连接状态的建立和维护带来了一定的困难。
(3) TCP协议采用基于数据包(packet-based)的可靠性度量,即尽力保证所有发出的数据包都被接收节点正确收到。在WSN 中,可能会有多个传感器节点监测同一对象,使得监测数据具有很强的冗余性和关联性。只要最终获取的监测信息能够描述对象的真实状况,具有一定的逼真度(fidelity),并不一定要求数据包传输的完全可靠,这种方式也被称为基于事件的(event-based)可靠性度量。
(4) TCP 协议中数据包重传通过端节点之间的ACK 反馈和超时机制来保证。传感器网络数据包中所含的数据量相对较小,大量ACK 包的传输会加重传输负载和能量消耗。并且,每次ACK 确认和数据包重传都要从发送端发出经历多跳传输路径到达目的端,引发整条路径上所有节点的能量消耗。
(5) WSN 中非拥塞丢包和多路传输等引起的数据包传输乱序,都会引发TCP 协议的错误响应,使得发送端频频进入拥塞控制阶段,导致传输性能下降。
(6) TCP 协议要求每个网络节点具有独一无二或全网独立的网络地址。在大规模的WSN 中,为了减少长地址位带来的传输消耗,传感器节点可能只具有局部独立的或地理位置相关的网络地址或采用无网络地址的传输方案,无法直接使用TCP 协议。
3、WSN 传输协议研究进展
当前对于无线传感器网络传输协议研究的工作还是侧重于拥塞控制和可靠保证。该研究将拥塞控制分为流量控制、多路分流、数据聚合和虚拟网关等;可靠保证则包括数据重传、冗余发送。
流量控制中,ERST、PORT 和IFRC 协议是基于报告速率调节的拥塞控制协议;Fusion、CCF 是基于转发速率调节的拥塞控制协议,适合要求数据逼真度较高的网络;Buffer-based、PCCP、CODA 则是基于综合速率调节的拥塞控制协议。ERST 考虑了可靠性和能耗的因素,通过调整报告速率来减轻拥塞;PORT 协议则将报告速率调整问题建模为优化问题,解决ERST 的不足;IFRC 则着重保证信道带宽能更公平地被相邻多个节点所分享。
Fusion 采用了令牌桶机制,节点要按照一定规则积累令牌,且发送一次数据就消耗一个令牌;CCF 用速率比较的方法,拥塞发生时节点将自身转发速率与父节点告知的转发速率比较,以其中较小的值来转发数据包。
Buffer-based 采用基于缓冲区的轻量级控制机构。发送数据包之前,要求节点监听邻居节点的缓冲区溢出否;PCCP 对数据流赋与不同的加权优先级,来保证调整公平性;CODA 结合了开环和闭环控制方式来解决拥塞。网络流量突发导致局部短暂拥塞时就启用开环控制。同时,若某被监测事件的发生频率低于设定的信道吞吐量,源节点即可自行调整报告速率,否则就启动闭环拥塞控制。
多路分流就是通过多路转发来分散流量,解决拥塞问题。其中,ARC 协议是利用网络中的冗余节点构建新的转发路径,CAR 与ARC 方法相近,BGR 则是在地理路由中增加方向偏离范围,以此来扩大转发路径的可选范围。
数据聚(
- 无线传感器网络技术的军事应用(05-14)
- 推动物联网发展 供电--物联网的基础设备的生命线(07-27)
- 无线传感器网络电源智能控制系统方案(07-18)
- 无线传感器网络中基于RSSI的节点距离预测(11-19)
- 太阳能充电及自动跟踪电路设计(01-18)
- 基于ZigBee无线传感网的电源监控系统设计(04-21)