无电感D类音频应用实现极低EMI的技术方案
导读:
功率电感和铁氧体磁环的价格差异显著,这推动了D类音频放大器滤波设计步入无电感时代。但同时,在铁氧体磁珠的作用下,滤波器的截止频率会急剧飙升,从几千赫兹增加到几兆赫兹;从而削弱了滤波器的EMI抑制效果。因此,D类应用亟需降低EMI噪声。在D类音频无电感应用中,要取得良好的EMI结果取决于电路板电平调整与适当的PCB布局。铁氧体磁环配备适当的电容可以降低D类输出边缘速率,但同时也会产生一些瞬时振荡,加剧传导性电磁干扰,因此,需要利用佐贝尔电路降低瞬时振荡。
本文将介绍一些电路板电平调整技术,包括铁氧体磁珠选择原则——降低边缘速率,佐贝尔网络调整方法——减少瞬时振荡,以及适当的PCB布局等。这些解决方案通过利用TI最新的EMI优化D类音频放大器TPA3140D2,帮助客户大幅节约系统设计成本,同时获得出色的音频性能。
无电感滤波器
无电感设计的目的是利用成本低廉的铁氧体磁珠替代昂贵的电感,为客户实现系统层面上的 低成本EBOM(工程材料账单)目标。铁氧体磁珠等同于多层片式电感。受当前铁氧体磁环材料和制造技术的限制,此类电感很难同时承受大电流、高阻抗。以日本东光多层片式电感为例,如果工程师将额定直流电流值设定为>2.5A,则绝大多数电感值将低于1uH。行内另外一家的产品顺络铁氧体磁珠系列(UPZ2012)也有类似表现:如果最大额定电流大于2.5A,铁氧体磁环磁珠同等电感值小于0.6uH。
表1为UPZ2012系列铁氧体磁珠在100MHz的阻抗、以及不同铁氧体磁环的最大额定电流和最大直流电阻。
表1 2012型贴片铁氧体磁环的阻抗与最大电流
如图1所示,“120Ω@100MHz 铁氧体磁珠”的同等电感值为0.39uH,而 600Ω@100MHz 铁氧体磁珠,同等电感值为1.59uH。
图1 铁氧体磁珠同等电感值
铁氧体磁珠工作时相当于一个并联谐振回路,如同电感在低频域(<100MHz)、电容在高频域(>100MHz)工作一样、也如同一个纯电阻在自身的谐振频率点一样。在使用铁氧体磁珠设定输出滤波器时,其基础就是利用它的电感特性。因为每个LC滤波器 (无源滤波器)均拥有自身的谐振频率,在此频率点,滤波器的增益很大,导致过滤后产生瞬时振荡。R1和C1将吸收由IC本身造成的振荡能量,通常使用10Ω的电阻和330pF的电容。R2和C2将吸收由滤波器本身造成的振荡能量。
图2 铁氧体磁珠滤波器设计
如何利用无电感滤波器实现低EMI目标?
意见1:选择铁氧体磁珠降低边缘速率
TI 设备中利用了一些技术,尽量降低5MHz频带(此频率通常为铁氧体磁珠滤波器的截止频率)范围内传导的EMI噪声。扩展频谱、L和R声道(D类立体声音频)的相移等也会有一定的帮助。对于小于5MHz的 EMI带宽,尤其是当开关频率约为300kHz(以获得较佳效率),实验结果显示减少边缘速率是降低EMI的有效方法。
图3 不同阻抗铁氧体磁环的边缘速率
图3中,较高的铁氧体磁珠阻抗可以实现较低边沿速率的D类输出;使用600ohm@100MHz 的铁氧体磁珠,可以获得最低边缘速率的D类输出,最终在高频段实现最佳EMI结果。然而,阻抗较高意味着额定电流较小。表1中,阻抗=600ohm@100MHz,最大额定电流为2A。以电视客户为例:
电视应用示例:PVDD (功率电源)= 12V,扬声器负载=8Ω,BD模式,忽略PCB与铁氧体磁珠的导通电阻和直流电阻。最大电流 = 12/8 = 1.5A。
在PVDD = 12V /8Ω扬声器的情况下,工程师可以使用600ohm@100MHz的铁氧体磁珠来设计滤波器。
图4为铁氧体磁珠对于传导性EMI的效果
图4 铁氧体磁珠对于传导性EMI的效果
图5为铁氧体磁珠对于辐射性EMI的效果
图5 铁氧体磁珠对于辐射性EMI的效果
意见2:利用佐贝尔网络,尽量降低瞬时振荡。
图6为我们设计的用于降低输出滤波电路振荡效应的典型电路。R1和C1将吸收由IC本身造成的振荡能量。R2和C2 用于吸收由滤波器谐振频率造成的振荡。
图6调谐,以减少振荡、降低边缘速率
图7.a中,在传导性EMI测试噪音频带,捕获到周期为350ns的振荡(约2.85MHz),其能量在佐贝尔网络之后已经大幅减弱,并获得更高边缘增益。
表2 滤波器和佐贝尔网络设置
图7调整佐贝尔网络和电容(减少振荡,获得较慢的边缘速率)
不过又出现了另外一个问题,图8显示振荡加剧了2MHz~4MHz的频带噪声(如果D类输出电流增加的话,振荡会更加严重)。从理论上讲,谐波分量越高,振幅应
- 功率电感对电源的改善(10-21)
- DC-DC转换器的电源转换效率和功率电感性能的解决方案(02-25)
- 基于DSP技术的功率电感5kW离网型光伏逆变器设计(08-17)
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)