微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 正确理解和比较高速 ADC 的产品说明书

正确理解和比较高速 ADC 的产品说明书

时间:02-01 来源:电子产品世界 点击:

用于其他厂商的话,经常会导致不完善或不精确的产品说明书。

设计人员应对没有任何质保书的器件、有质保书但是条件不切实际的器件(例如 0-pF 负载)、没有明确用于捕获数据所需的参数的器件(例如,给出了建立时间但没有给出保持时间)、没有说明规范所使用的 VOH 和 VOL电平的器件(例如,给出从 50% 到 50% 的信息,但是要推导出 VIH/VIL 逻辑电平却很麻烦)、或者没有说明对整个工作温度范围内详细参数的器件进行明确的询问。

此外,为了改进数据捕获窗口,TI 与其他厂商均提供了一款输出时钟,与输入时钟相比该时钟能够更好地跟踪输出数据。使用输出时钟可以减小应用中的时序局限。

最后,请注意,建立与保持时间的定义和门电路建立与保持时间的对应部分相同。在门电路中,建立时间表示数据在门电路输入端准备好的时间比时钟边缘闭锁它的时间提前了多少。时间提前得越多,使用该闭锁门电路就越困难。在 ADC 中,建立时间表示数据稳定时间比输入或输出 ADC 时钟边缘提前了多少。建立时间越长,捕获数据就越容易。这些规则在保持时间上也同样适用。

过程增益

与 SNR 的两个参数相比较,用户必须考虑到 ADC 的采样速率。信噪比可通过对收敛于奈奎斯特曲线的总体噪声底限进行积分得到。当然,用户的信号只会占据一些带宽;只有在这个带宽上的噪声才会影响到信号,而其他噪声可由数字滤波器滤除。对于相同的 SNR 而言,采样速率高的 ADC 噪声底限比较低。例如,一个 200kHz 带宽,信噪比为 90-dBFS 的 ?∑ 型 ADC 的性能在理论上比产品说明书中规定的信噪比为 75-dBFS、100 MSPS 的 14 位 ADC—— ADS5424 要好。当然,如果在使用 ADS5424 对 200-kHz 带宽进行采样之后(明显超过 100 MSPS 的采样率),我们采用数字滤波来滤除带宽外的噪声(从 200 kHz 直到 50 MHz),ADS5424 的等效信噪比在这一带宽上为:

SNR200 kHz = 75 + 10×log10(50×106/200×103) = 99 dBFS >> 90 dBFS。

ADS5424 的信噪比将明显优于 ?∑ 型 ADC(为了示例,假设噪声在奈奎斯特曲线上均匀分布,也就是说没有明显的闪烁噪声影响)。前述方程式的第二项称为过程增益。随着过采样比的增加,用户在相同信噪比每增加采样率一倍,噪声底限就会降低 3 dB。换言之,相关频带上的等效精度将增加 0.5 比特。

数据适用的条件与最小值

如果没有明确的条件,那么规范将是没有意义的。在广告业、市场营销材料以及选择参数表中这一点尤其重要,条件能够简化产品说明书显示的信息,但在某些情况下,并没有提到测量条件。

同时,典型值通常代表了分布的平均值。不过,用户应注意看一下最小值,特别是当器件在某一特定范围内工作(例如多变的温度环境)时。在典型与最小参数之间的大范围变化会出现一些问题。变化是否由最终测试结果的局限性引起?如果是,则该器件可能适用,但是这样做的风险是只能保证最小值。最差的情况是器件本身所导致的局限性,工艺的变化(不同器件之间)可以导致设计的不耐用性。为了使器件具有较好的稳健性并屏蔽此类问题的一个不错的做法是查看产品说明书中的典型性能变化与电源电压或温度的关系曲线图,如图 2 中的示例所示。

  

  图 2 ADS5424 SFDR 与模拟电源和温度范围的关系曲线6

与功率参数一样,在相同的产品说明书中查找不同的参数(例如 SNR 和 SFDR)时,必须确保它们是在相同条件下给出的参数。例如,某些器件的 SFDR 模式以牺牲 SNR 为代价来改善 SFDR;或者它们有不同的输入范围,这会影响到 SFDR(在较小输入范围内较好)和 SNR(在较大输入范围内较好)。

最后,需注意的是,大多数规范在是在接近满量程范围内给出的。然而,SFDR(在 dBFS 规范中)在输入振幅减小时可能变好也可能变得更糟糕。厂商在最终测试中不能屏蔽很多条件,因为那样会增加测试时间和测试成本;但他们通常会给出说明各种条件影响的典型图表。

输入带宽

通常,输入带宽代表了 ADC 响应平坦度与输入频率的关系。其并没有表明该器件在这些输入频率

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top