选择MEMS麦克风前置放大应用的运算放大器
VOUT= (2.0 kΩ + 200Ω)/2.0 kΩ ×VIN= 0.91 ×VIN
直隔电容C1和R1会形成一个高通滤波器,因此C1应选择足够大的值以确保该滤波器不会干扰麦克风的输入信号。ADMP504的低频转折点为100 Hz。如果R1再次选择2.0 kΩ,则2.2μF电容将形成一个频率为40 Hz的-3 dB高通滤波器,远低于麦克风的转折频率。
选择至少比麦克风低一个频程的截止频率也是一项经验法则,除非需要实现一项具体的高通特性。
电压跟随器
如果反馈环路中没有使用分压电路,同相放大器也可用作电压跟随器。该电路非常适合在无法直接驱动较长的走线或者电缆时缓冲麦克风的输出,可能不需要为信号增加额外的增益。
图6. 电压跟随器
电压跟随器可在反相极前端用作缓冲器。可能需要改配置以确保能在反相电路中使用更低值的电阻。在无缓冲的情况下,反相极的输入阻抗可能需要采用更低值以实现目标噪声性能。在保证缓冲和第一个运算放大器的低输出阻抗(与MEMS麦克风相比)的情况下,电阻R1和R2能选择较低值以避免给电路造成额外的噪声。
图7.带反相放大器的电压跟随器缓冲器
差分输出
MEMS麦克风的单端输出可用两个运算放大器和两个反相电路级(见图8)以简单的串联结合转换为一个差分信号。每级的输出转换为彼此反相,作为差分对。图8显示的电路中信号的放大发生在第一级,由R1和R2设置。电阻R3和R4值应相等,为第二级提供单位增益。为了实现最佳性能,应该采用1%电阻(或更好)来使两级之间的误差最小化。
该配置的一个缺点是一个输出仅由一个放大器产生噪声和失真,而第二级输出则有两个放大器产生噪声和失真。第二个小问题是每个放大器之间存在一个非零延迟,因此差分输出的两侧并非完全对齐。然而,这可能对差分信号的性能影响极小。
图8. 差分输出电路
图7显示的电压跟随器和反相放大器电路还可用于实现一个增益为1的差分信号。同相输出可以从电压跟随器放大器输出提取,反相输出可以从反相放大器的输出提取。在该配置中,R1和R2的值应保持相同以达到统一的增益。
差分放大器,例如AD8273,也可用于实现单端至差分电路,从前文提到的问题方面考虑也可能具有更出色的性能。
图9显示了AD8273配置为单端至差分放大器。每个放大器配置为G=2,因此差分增益为4×。
图9. AD8273单端转差分配置,G = 4
运算放大器的选择
ADI提供大量适合麦克风前置放大应用的各种运算放大器产品。图1显示了部分此类元件的规格,根据电压噪声进行分类。不管您的应用旨在实现最佳性能还是您需要设计一个性价比高的电路,总有一款应用放大器能够满足您的需要。
性能仿真
ADI提供了用于仿真模拟电路的工具。NI Multisim器件评估板的ADI版本可用于快速建立一个电路并显示其性能规格,包括频率响应和噪声电平。该Multisim版本包含了大部分该库中讨论的大部分运算放大器,可以无需从不同源下载和管理SPICE模型就实现快速仿真。不同器件,包括运算放大器,可置入电路或取出以比较不同器件的性能。
- 基于MEMS的硅微压阻式加速度传感器的设计(11-03)
- 压电振动式发电机微电源智能控制应用电路的设计(01-09)
- 低压驱动RF MEMS开关设计与模拟 (10-01)
- MEMS时钟让手机设计占位更小功耗更低(04-07)
- SiTime:延长电池寿命,从大局考虑(07-18)
- 降低封装测试成本,MEMS产品封装设计要点(01-31)