微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 高速转换器简介和工作原理

高速转换器简介和工作原理

时间:10-15 来源:互联网 点击:

仪器仪表等系统都在朝着“带宽”更高的系统发展。 相应地,不断提高的带宽需求要求数据转换器具备更高的采样速率。

如果说带宽这个维度直观易懂,那么动态范围这个维度则可能稍显晦涩。 在信号处理中,动态范围表示系统可以处理且不发生饱和或削波的最大信号与系统可以有效捕获的最小信号之间的分布范围。

我们可以考虑两类动态范围。 首先,“浮点”动态范围可以通过在低分辨率模数转换器(ADC)之前放置一个可编程增益放大器(PGA)来实现;例如,对于12位的浮点动态范围,应在一个8位转换器前放置一个4位PGA。 当增益设为低值时,这种配置可以捕获大信号而不会超过转换器的范围。 当信号极小时,可将PGA设为高增益,以将信号放大到转换器的“噪底”以上。 信号可能是一个信号强或信号弱的电台,也可能是成像系统中的一个明亮或暗淡的像素。 对于一次只尝试恢复一个信号的传统信号处理架构来说,这种浮点动态范围可能会非常有效。

其次,“瞬时”动态范围更加强大。 在这种配置中,系统拥有充足的动态范围,能够捕获大信号而不产生削波现象,同时还能恢复小信号。 这种情况下,可能需要一个14位的转换器。

该原理适用于多种应用——恢复强电台或弱电台信号,恢复手机信号,或者恢复图像的超亮和超暗部分。 在系统倾向使用更加复杂的信号处理算法的同时,对动态范围的需求也是水涨船高。 这使得系统可以处理更多信号。 如果全部信号都具有相同的强度,并且需要处理两倍的信号,则需要增加3 dB的动态范围(在所有其他条件相等的情况下)。 可能更重要的是,如前所述,如果系统需要同时处理强信号和弱信号,则动态范围的增量要求可能要大得多。

动态范围的不同衡量指标

在数字信号处理中,动态范围的关键参数是信号表示中的位数,或称字长。 简单来说,一个32位处理器的动态范围多于一个16位的处理器。 过大的信号将发生“削波”——这是一种高度非线性的运算,会破坏多数信号的完整性。 过小的信号(幅度小于1 LSB)将变得不可检测并丢失掉。 这种“有限分辨率”通常称为量化误差,或量化噪声,在确立可检测性“下限”时可能是一个重要因素。

量化噪声也是混合信号系统中的一个因素。 不过,数据转换器的可用动态范围由多个因素共同决定,而且每个因素都自己的规格:

• 信噪比(SNR): 转换器的满量程与频带总噪声之比。 该噪声可能来自量化噪声(如上所述)、热噪声(所有现实系统中都存在)或其他误差项(如抖动)。

• 静态非线性度: 差分非线性度(DNL)和积分非线性度(INL)是衡量从数据转换器输入端到输出端的直流传递函数的非理想程度的指标(DNL通常确定成像系统的动态范围)。

• 总谐波失真: 静态和动态非线性度会产生谐音,可有效地屏蔽其他信号。 THD通常会限制音频系统的有效动态范围。

• 无杂散动态范围(SFDR): 考虑相对于输入信号的最高频谱“杂散”,无论是二阶还是三阶谐波、时钟馈通,甚至是60 Hz的“嗡嗡”噪声。 由于频谱音或杂散可屏蔽小信号,因此,SFDR是用来表示许多通信系统中可用动态范围的一个良好指标。

还有其他规格可用。 实际上,每种应用都可具有自身的有效动态范围描述。 开始时,数据转换器的分辨率是其动态范围的一个良好“替代指标”,但在真正决定时选择正确的技术规格是非常重要的。 关键原则是,越多越好。虽然许多系统可以立即意识到需要更高的信号处理带宽,但对动态范围的需求却可能不是如此直观,即便要求更加苛刻。

值得注意的是,尽管带宽和动态范围是信号处理的两个主要维度,但还有必要考虑第三个维度,即“效率”。 这有助于我们回答这样一个问题:“为了实现额外性能,我需要付出多少成本?”我们可以从购置价格来看成本,但对数据转换器和其他电子信号处理应用来说,一种更加纯粹的、衡量成本的技术手段是功耗。 性能越高的系统——更大的带宽或动态范围——往往要消耗更多的电能。 技术的不断进步推动着人们提高带宽和动态范围,同时减少功耗。

主要应用

如前所述,每种应用在这些“基本信号维度”方面都有着不同的要求,而在给定的应用中,则可能有多种不同的性能。 例如,一个100万像素的摄像头和1000万像素的摄像头。 图3展示了不同应用通常要求的带宽和动态范围。 该图的上半部分一般称为“高速”,意味着采样速率为25 MHz及以上的转换器,可以有效处理

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top