一篇详尽的晶体三极管工作原理介绍
所以,饱和状态条件下,发射结是正偏,集电结是“零”偏并不是正偏,因此,集电极的电流仍然是以发射区过来的“少子”构成,属于少子反向导通电流。为什么说是反向,前已说明。
3 饱和状态下三个电极的电位值问题与上面所说类似,要特别注意的是:此时的集电结并不是普通意义上的正偏导通,这与发射结的正偏导通有着本质的不同。此时,发射结正偏导通的电流是“多子”在门电压作用下的正向通过PN结的电流,是普通意义上的PN结正向电流;而集电结此时是“零”偏,集电结通过的电流是属于“少子”性质的反向电流。所以,两个PN结的电流对于PN结自身来说是性质完全不同的电流,因此,其电压值一个是0.7V而另一个是0.4V根本就无可比性,这是两个不同性质的外部条件参数,虽然都是电压,但性质不同。一个是正向导通的门电压,而另一个是满足饱和状态的“零”偏电压,只有在此条件下,集电极电流才会在定量上脱离的基极电流的“比例”控制进入所谓的饱和状态。
简单说,两个PN结都导通,一个是正向导通性,另一个是反向导通性质。正向导通的是多子电流,需要0.7V的门电压,另一个导通的是少子反向电流,这个少子的反向电流导通时不仅可以不需要电压,甚至还可以承受一点微弱的“逆流”电压,你说的那个0.4V就是属于这种性质的电压。
再举个不太恰当的例子,如果把整个三极管比做一个水龙头,发射结的门电压则是控制这个水龙头是否出水的关键,而集电结电压只是水龙头究竟该怎样出水、如何出水的一个条件。发射结加上门电压,这个水龙头就打开了。此时,如果集电结加反偏电压,这个反偏电压其实正好符合水龙头的出水方向,所以它对出水有定性方面的帮助,只是出水的量则要按严格比例受控于Ib,可大可小,这就是放大状态;如果集电结加零压,则出水量就会失去比例控制,这也就是所谓的饱和状态(其实,这时的出水量并不见得一定会比放大状态时大,很有可能还很小,其大小主要取决于Uce);如果集电结加上合适的“正偏”电压(此时正偏电压对出水起反作用),比如:稍大于0.4V但又小于0.7V,这个水龙头就会停止出水,为什么?因为发射结打开的这个水流又被这个合适的正偏逆流电压给堵回去了。显然,如果这个正偏电压超过了0.7V,这个水龙头的水流就会倒着流了。不知我这样说,是否更容易让人明白。
最后,再说一下你关于势垒的问题,两个PN结的势垒理论上应该完全对称(忽略其内部结构并不严格对称的影响),当两个PN结都加上正向偏置的门电压后,这一情况理论上完全如此——对称。但这里的问题是两上PN结的导通性质完全不同,这一点以上已详细说明,所以,才会出现你说的0.7V与0.4V不一样的所谓问题。0.7V是PN结的正偏导通电压,而0.4V的正向电压如上所述,只是集电结为了堵住反向少子电流通过PN结的一个电压值。显然,这两个电压性质完全不同。
根据我自己的一管之见,我嗦嗦地说了这么多,希望对你能有所帮助。最后,谢谢你的问题,看得出你也是个非常认真的人,能与你这样的网友讨论问题,是让我感到非常愉快的事。
请问,三极管的饱和情况分析,按照上面的那个输出特性曲线,怎么分析呢?沿某一确定IB电流吗?怎么通过上面这个输出特性分析饱和状态?是怎么进入饱和状态的?因为输出特性曲线是分别让IB和UCE改变后得到的一个曲线。如果是一个电路以及固定了,是不是得用带有负载线的曲线图进行分析是否进入饱和状态的?
另外可以用电工学上的线性叠加方法来计算饱和状态的电流情况吗?
我们以最常见的三极管输出特性图(Ib与Uce及与Ic的关系图)来说,就是当Ib足够大而Uce又足够小时就会进入饱和状态。或者再简单点,让Uce确定,比如为0.4V,从图中很容易就可看出只要Ib大到一定值,三极管就会进入饱和状态,所谓的饱和状态,也就是Ic在数量上不再与Ib保持严格比例的状态。
我认为,在外电路条件满足时,饱和状态下的电流计算当然可以根据线性方法来计算,因为,饱和状态下的三极管在电路中可以等效为一个接通了的开关。
这里不方便画图,我只能说这些,希望能对你有帮助。
晶体三极管 相关文章:
- 三极管工作原理及主要参数详解(02-11)
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)