微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于单片机的实验室配电箱无线安全监测系统

基于单片机的实验室配电箱无线安全监测系统

时间:10-16 来源:互联网 点击:

电压互感器的额定输入电流是额定输出电流的1 000倍,I1是输入电流,I2是互感后的电流,通过互感器输出的电压是电阻Rf两端电压,最后计算时要I2缩小一半得到电线输入电流,额定采样电压 ≤0.5倍IC电源电压。电压检测比较简单,通常可以并接在待测电压的线端,这里的TV1013-1M四个引脚中,1、2脚接输入电压,互感后3、4脚输出电压,通过互感器后得到的电压就是电阻Rf两端的电压。

1.3 信号调理

配电箱中电线输入交流信号,因而通过互感器输出的电压电流是交流信号,所以调理电路中采用的是双电源运放uA 741,调理电路输出的信号要接到单片机MSP430的A/D口,A/D口是单极性的,信号大小要控制在0~5 V之间,因此需要将互感器输出的信号抬高使采集到的信号在高速采样时峰峰值都在0~5 V之间。设定电流互感器的输入电流最大不超过8 A,超过8 A判定为异常。则电阻Rf两端电压最大为1.92 V,通过调理电路,使电压上抬2.5 V,输出电压在0.58 V~4.42 V之间。通过高速采样,将采到的信号取平均值,除以1.414得到直流信号,输送给单片机的A/D口引脚。

电压互感器的调理电路与电流信号的调理电路一样,只是调理电路中上抬后的电压大小不一样。得到输出电压在0.5 V~4.5 V之间,高速采样后,将采到的信号取平均值,然后除以1.414得到直流信号,可以输送给单片机的A/D口引脚。

1.4 显示及报警模块

该模块由数码管显示和按键控制部分组成。设定电流不超过8 A,电压不超过380 V,温度不超过-20℃~80℃,若超过,则蜂鸣器报警。按键控制包含复位按键和消除报警键。当参数超过系统设定值,复位键用于系统初始化,消除报警键可取消蜂鸣器报警,及时处理各种问题。四位数码管显示测量数据,每次只显示一项测量值,每两秒更换一次,用LED灯区分不同显示数据,便于工作人员对实验室实时监测。

2 软件设计

本文中的软件设计部分全部采用C语言编程,可提高程序的运行速度和效率,采用模块化的程序结构,各个功能子模块独立,调试方便,便于控制功能的进一步扩展。首先单片机STC12C5A60S2和温度传感器DS18B20分别初始化,60S2接收传感器和互感器传输来的数据,进行判断,是否超出预警值,如超过则报警,数据正常,则显示数据并APC230无线发射数据。这是整个方案的软件设计流程,如图4所示。

d.jpg

3 系统测试

本文主要测试电压电流信号,高压电比较危险,因此用模拟箱测试分析结果。用模拟电子箱测试电流互感器可得到如表1的数据。

e.jpg

在模拟电子箱上电流互感器输入的电压太小,致使输出的电压很小,进而计算所得的电流太小,实际的配电箱中电压输入比模拟时大的多,电压输出也会增大,同样电流也大。这里测得的输入电流达到系统要求,实验数据在可测范围内。

用模拟电子箱测试电压互感器可得到如表2的数据。

f.jpg

经检测,实际输出电压比理论值偏小,可能是电阻比实际小一些,引起的电压偏小或电路中消耗掉一部分电压引起的。互感器测试的电流、电压在传输过程中,受外界的干扰,在检测数据时会出现电流电压偏小的现象,另外电流电压输入的值偏小,容易引起较大的误差。但基本不影响互感器的使用,本设计的电压电流互感器都是可以正常使用的。

4 结束语

本设计完成了对配电箱电流电压温度的采样分析,实时发送测量数据给工作人员,监测系统工作可靠,测量精度高,设计成本低,不需要大型设备,互感器耐压值高,受外界干扰小,具有报警提示功能可及时处理突发事故,可以达到监控要求,在实验室安全监测方面有较大实用价值。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top