基于RFID与GSM技术的烟酒防伪装置设计
“测试”、“成功”、“失败”、“打折”以及电池图形等信息。
由于单片机I/O口无法直接驱动显示器,需要设计驱动电路。本系统采用段式LCD驱动器CP2400作为驱动芯片,该芯片可以支持多达128段的LCD,支持低功耗闪烁功能,可在1.8~3.3 V低电压下稳定工作。CP2400与单片机通过SPI总线通信。CP2400与单片机及显示器的接口电路设计如图4所示。
2.4 SMS通信技术的实现
本项目中,GSM技术实现需要设计3个程序,分别是GSM网络注册程序设计、单片机识别并处理GSM模块接收来自厂商短信的程序设计、GSM模块向厂商发送信息程序设计。限于篇幅,笔者主要讨论利用GSM模块接收和发送信息。
2.4.1 GSM发送信息
首先需要将预接收短信的号码进行16进制编码。编码的方法是在号码后面加F,然后将相邻奇偶位换位即可。
其次是对欲发送的信息内容进行编码。采用“汉字/Unicode互换工具”进行编码,操作方便,只需要在该软件“双字节汉字”栏中填入如要编码的汉字,然后点击“汉字转
Unicode”,在“Unicode码”这一栏中会自动显示转化后的16进制Unicode码。
再次是进行PDU格式编码。PDU编码格式为001100(前序)+0D(目的号码长度)+91(中国地区接入码)+86(国际接入码)+目的手机号码+0008(发送方式为8bit)+A7(信息保存时间)+信息长度+短信内容(Unicode)。
GSM发送信息软件设计流程图如图5所示。
2.4.2 GSM接收信息
GSM模块在接收到AT指令及厂商发来的确认短信时均会通过串口向单片机发送反馈信息,在程序设计时定义数组gsm_data[]来接收来自GSM的反馈信息。其中,在收到短信的反馈信息中会包含“+CMGS”字符,通过调用strstr(gsm_data,“+CMTI:”)函数即可识别GSM是否接收到短信。然后向GSM发送读取短信的AT指令AT+CMGR=1,gsm_data[]即可接收短信内容。
3 系统整体软件设计
当按下防伪装置的电源按键后,单片机首先检测当前电池电量,并在显示器上显示,如果电亮不足,会自动关机,然后开始利用串口向NZRM710模块发送读标签命令,NZRM 710会利用RFID技术将命令传送给电子标签,电子标签校对命令数据帧中的访问密码、校验码来确定读标签命令是否合法,如合法,则自动将标签内部存储的商品信息发送给NZRM 710,NZRM710再通过串口将采集到的数据交给单片机处理,在单片机的控制下,将商品信息在显示器上予以显示,利用GSM模块向厂商发送商品信息,收到商家的反馈信息后在显示器上显示,同时通过NZRM710将电子标签信息清0。为了节能,在连续3次检测标签失败后,系统会自动关机。软件实现流程图如图6所示。
4 实验结果
根据反复的实验,该系统运行稳定,功耗较低,完全满足手持设备的功耗要求。表3列出了系统待机测试的电流值以及笔者在每间隔1分钟情况下连续测得的系统工作电流值,电流单位为mA。
5 结束语
针对假冒伪劣烟酒扰乱市场,给厂家和消费者带来巨大经济损失,设计了一款基于GPRS与GSM技术的防伪装置,电子标签可回收使用,设计成本低,实验证明该方案可行性高,运营成本低具有很好的应用前景。
- 用于下一代移动电话的电源管理划分(08-28)
- 针对EDGE/GSM手机发送电路的四种架构分析(03-21)
- 基于GSM电流保护系统设计方案(07-12)
- 基于AVR的GSM无线智能变压器综合报警系统(10-19)
- 基于GSM 的远程LED 点阵显示系统(10-24)
- 浅谈EDGE演进及其测量(05-18)