CCD与CMOS图像传感器对比
层的厚度,改善红外敏感度将会降低成像器的空间特征分辨能力。改变电压或外延掺杂度将会影响CMOS模拟和数字电路的运作。
相反,CCD在具备较厚的外延层的同时,能够很好地保持精密空间特征分辨能力。某些近红外CCD的外延厚度可达100微米,而CMOS成像器的外延厚度仅为 5至10 微米。CCD的像素偏置和外延浓度也必须作出调整,形成更厚的外延,然而与CMOS相比,这种调整对于CCD电路的影响更易控制。
专门针对近红外设计的高敏感度CCD成像器比CMOS成像器的敏高度要高得多。
紫外成像器
如今,深亚微米光刻技术采用远紫外线进行质量检测由于紫外光子在十分靠近硅表面时被吸收,因此紫外成像器不能采用可能阻碍紫外光子吸收的多晶硅层、氮化物层或厚氧化层。现代紫外成像器的背面都经过了减薄处理,多数只会在硅成像表面的上方加上一层薄薄的抗反射膜。
虽然背面减薄技术在移动成像器上已屡见不鲜,然而在紫外成像上却并非如此。无论是CMOS或是CCD,成像器表面必须经过特殊的表面处理,才能够获得稳定的紫外响应。某些针对可见光成像设计的背面减薄成像器都贴有一层较厚的氧化膜,可在紫外成像时改变或吸收紫外光。某些背面减薄成像器的成像表面则经过高硼掺杂膜的钝化处理,可延展硅外延的深度,从而导致大量紫外光生光子在复合过程丢失。
紫外响应和背面减薄技术可应用在所有线阵成像器上,但不能应用在所有面阵成像器上。所有全局快门面阵CCD成像器均不可采用背面减薄。在这点上,虽然有些代价,但是CMOS面阵成像器的情况较好。卷帘快门面阵CMOS成像器可背面减薄。如果紫外敏感成像器也需要在可见光中成像,传统CMOS全局快门面阵成像器的每个像素的存储节点经过背面减薄处理后需要被遮挡。背面减薄成像器无法有效地屏蔽部分像素的入射光,除非大大降低成像器的填充系数(光敏感面积与总像素面积的比率)。有些类型的CMOS全局快门面阵成像器尽管没有光敏感存储节点,但是具备以下全部或部分特性:高噪声、低阱容或卷帘快门。
时间延迟积分成像器
除了面阵和线阵成像器外,时间延迟积分成像器也是一种重要的成像器类型。时间延迟积分 (TDI) 成像器通常用于机器视觉和遥感操作。它的操作与线阵成像器类似,不同之处在于时间延迟积分成像器拥有上百条线阵。当物体影像移动通过每条线时,每条线都会捕捉到物体的快照。因为在时间延迟积分成像器中,物体的多重快照能够相加在一起,从而产生强烈的信号,因此时间延迟积分成像器特别适合信号很弱的情况。
时间延迟积分成像器可将多重曝光与物体移动同步起来如今,CCD和CMOS 时间延迟积分成像器相加多重快照的方式有所不同。CCD将信号电荷相加在一起,而CMOS则将电压信号相加在一起。CCD可实现无噪声相加,但CMOS不能。当CMOS时间延迟积分成像器的行数较多时,相加的噪声极高。即使是最先进的CMOS 时间延迟积分成像器,它的噪声也不可能比CCD时间延迟积分成像器低。
CMOS 时间延迟积分成像器的一个发展方向在于模拟CCD 时间延迟积分成像器,使其具备类似CCD的像素,从而实现电荷相加。我们称之为电荷域CMOS时间延迟积分成像器。电荷域CMOS 时间延迟积分成像器在技术上是可行的,但是如果需要进一步开发、微调和完善这一技术需要投入更多的成本。与CMOS面阵和线阵成像器相比,电荷域CMOS 时间延迟积分成像器的成本很高。手机 既不需要时间延迟积分成像器也不需要相加电荷。因此,CMOS 时间延迟积分成像器的前景并不太乐观。
电子倍增
EMCCD是低信号应用的绝佳选择,特别是在科学成像应用电子倍增 CCD(EMCCDs)是指带有相乘信号电荷包结构的CCD,同时避免在相乘过程中带来噪声。因此,净信噪比(SNR)增加了。在信号微弱至略高于成像器本底噪声的应用中,EMCCD能够检测到先前难以检测到的信号。
在无需高速成像的应用中, EMCCD的性能优于CMOS。高速操作会增加CCD的读出噪声。因此,对于改进了信噪比的EMCCD,EMCCD和CMOS成像器的差别并不大,特别是专为低读出噪声设计的科学级CMOS成像器。与传统成像器相比,高速EMCCD还可显著降低功率。
低噪声CMOS成像器在信噪比、紫外吸收或时间延迟积分方面的性能不及CCD。有鉴于此,由于信号可能很弱,即使其他成像器能够达到EMCCD所具备的读出噪声,但是EMCCD解决方案从整体上而言也是最具优势的。
成本因素
影响成本的因素包括价格杠杆、规模、产量和每晶圆的设备数量。至此为止,我们已经讨论了CMOS和CCD 成像器在性能上的不同点。如果认为商业决策的决定因素只有性能,那这个想法实属天真。许多商业决策者更多关注的是产
- 3D集成电路将如何同时实现?(04-09)
- CCD时代将被CMOS终结?(05-17)
- 十个电荷泵的设计方案以及经典应用案例(07-04)
- 微光CMOS图像传感器读出电路设计(06-06)
- CMOS图像传感器电路设计(02-18)
- LDO能否提高小型照相机的照片质量(10-30)