脑部MR图像的Sigma-IFCM分割算法
时间:01-14
来源:互联网
点击:
4 实验结果
把原始的IFCM分割算法和改进后的Sigma-IFCM分割算法用于医学图像分割。所选择的脑部MR模拟图像来自Mcgill大学的MR模拟脑部图像数据库。下载的脑部图像是Tl-weighted的MR图像。本研究下载了噪声是7%和9%的脑部图像,分别用IFCM算法和SigmaIFCM算法进行分割以及评价对比,结果如表1所示,图中数据均为30幅图像分割结果的平均值。
可以用三个参数来评价分割算法的性能:Under Segmentation(UnS)、Over Segmentation(OvS)和Incorrect SegmentRate(InC)。这三个参数的值越小,说明算法分割效果越好。所有图像分割成脑白质、脑灰质、脑脊液和背景四部分。公式(4)中的参数λ和ξ分别取值0.47和O.53。公式(5)中的参数θ取1.2。
从表1可以看出,对于噪声是9%的脑部图像来说,Sigma-IFCM算法的三个评价参数在不同程度上都比原始IFCM算法的各参数值要小,尤其是脑白质和脑灰质的分割情况更为突出。这说明在这种情况下改进后的Sigma-IFCM算法比原始的IFCM算法取得了更好的分割效果。而对于7%噪声的图像, Sigma-IFCM和IFCM算法相比总体分割效果较前者略有优势,但效果不如噪音为9%时明显。从这些数据看,噪声越多的图像,SigmaIFCM算法分割效果越好。图3是分割前的脑部图像,(a)是原始的无噪声模拟MR脑部图像;(b)是具有9%噪声的模拟脑部图像。图4是分割标准和两种算法分割后的脑部图像。
文章提出了一种改进的IFCM脑部MRI图像分割算法。由于医学图像中一般都有各种未知噪声,采用一般的分割算法会对效果产生很大影响。本文提出的 SigmaIFCM算法改进了像素点邻居的选择方案,在去除噪声的基础上保持分割后图像边部的光滑特性,然后引用去毛刺边部光滑的技术来修改分割后的图像。统计结果表明,对图像的分割效果有显著改善。未来的工作可以对初始邻居点的选取进行一些研究。本文中初始邻居点为周边的8个像素点,可以考虑更大范围如周边的24个邻居点的情况。此外,去毛刺以及边部光滑的方法可以进行进一步的研究探讨。
把原始的IFCM分割算法和改进后的Sigma-IFCM分割算法用于医学图像分割。所选择的脑部MR模拟图像来自Mcgill大学的MR模拟脑部图像数据库。下载的脑部图像是Tl-weighted的MR图像。本研究下载了噪声是7%和9%的脑部图像,分别用IFCM算法和SigmaIFCM算法进行分割以及评价对比,结果如表1所示,图中数据均为30幅图像分割结果的平均值。
可以用三个参数来评价分割算法的性能:Under Segmentation(UnS)、Over Segmentation(OvS)和Incorrect SegmentRate(InC)。这三个参数的值越小,说明算法分割效果越好。所有图像分割成脑白质、脑灰质、脑脊液和背景四部分。公式(4)中的参数λ和ξ分别取值0.47和O.53。公式(5)中的参数θ取1.2。
从表1可以看出,对于噪声是9%的脑部图像来说,Sigma-IFCM算法的三个评价参数在不同程度上都比原始IFCM算法的各参数值要小,尤其是脑白质和脑灰质的分割情况更为突出。这说明在这种情况下改进后的Sigma-IFCM算法比原始的IFCM算法取得了更好的分割效果。而对于7%噪声的图像, Sigma-IFCM和IFCM算法相比总体分割效果较前者略有优势,但效果不如噪音为9%时明显。从这些数据看,噪声越多的图像,SigmaIFCM算法分割效果越好。图3是分割前的脑部图像,(a)是原始的无噪声模拟MR脑部图像;(b)是具有9%噪声的模拟脑部图像。图4是分割标准和两种算法分割后的脑部图像。
文章提出了一种改进的IFCM脑部MRI图像分割算法。由于医学图像中一般都有各种未知噪声,采用一般的分割算法会对效果产生很大影响。本文提出的 SigmaIFCM算法改进了像素点邻居的选择方案,在去除噪声的基础上保持分割后图像边部的光滑特性,然后引用去毛刺边部光滑的技术来修改分割后的图像。统计结果表明,对图像的分割效果有显著改善。未来的工作可以对初始邻居点的选取进行一些研究。本文中初始邻居点为周边的8个像素点,可以考虑更大范围如周边的24个邻居点的情况。此外,去毛刺以及边部光滑的方法可以进行进一步的研究探讨。
- 基于中颖SH79F164单片机的电子血压计应用(07-01)
- 医疗电子发展方向(04-17)
- 从高交会看医疗器械产品六大发展趋势(11-22)
- 世界首个固态量子处理器问世(07-13)
- 医疗电子技术大会折射行业发展方向(04-18)
- 李现路:DSP6000中C/C++语言和汇编语言的混合编程的方法(11-28)