埋藏式心脏复律除颤器的原理及参数设置
时间:01-14
来源:互联网
点击:
1 埋藏式心脏复律除颤器(ICD)的基本结构与功能
ICD由脉冲发生器和电极导线两部分组成。脉冲发生器的主要构件包括电池、感知与起搏线路和电容器。电池供给能量,电容器的作用是充电、放电,感知与起搏线路则负责心电监测、识别室性心动过速(VT)、心室颤动(VF)及心动过缓,发放起搏脉冲。早期的电极为心外膜电极,需开胸安装,以后改进为皮下电极,现在进展为经静脉心内膜电极,从而使埋藏术大为简化。电极导线一方面将感知的信号传入脉冲发生器,同时将起搏信号传递到心脏。由于电极型号的不同,电击可通过经静脉电极与脉冲发生器的机壳完成,也可由经静脉心内膜电极本身完成。
ICD的基本功能是识别和处理快速心律失常及心动过缓,其识别和处理心动过缓的工作原理与抗心动过缓起搏器相同。此处只介绍识别及处理快速心律失常的原理。
1.1 快速心律失常的识别
以快速心律失常的心率(或与其相应的周长)及持续时间(或快速心律失常的周期数)作为基本识别标准,其又有初始识别及再识别之分,初始识别标准用于每阵快速心律失常发作的首次判断,再识别标准用于经ICD治疗而未终止的快速心律失常的判断。VT与VF主要通过频率区分。不同厂家对上述识别标准的表示方法有所不同,比如CPI公司直接以频率(次/分)和持续时间(s)表示,而Medtronic公司则以周长代替频率,以心动周期的个数表示持续时间。以下举例说明ICD是如何识别快速心律失常的。
假如设定VT的识别标准为150 次/分,并希望VT发作持续时间为10 s时ICD即开始治疗。如果所用的ICD为CPI公司的Ventak PRx Ⅲ,频率标准可直接设定为150次/分,持续时间设定为6 s,这是因为持续时间的计算是在满足频率标准后才开始的。ICD持续监测心率的过程即是将每一个心动周长与频率识别标准的周长相比较的过程,当ICD在连续的10个心动周长中判断有8个等于或短于所设定的识别标准周长(频率标准150次/分,周长即为400 ms)时,ICD即确定满足VT诊断标准并开始计算持续时间。显然,计算持续时间之前心动过速已经持续了至少10个心动周期,以上述150次/分为识别标准,则10个心动周期应为4 s,所以持续时间虽然设定为6 s而VT实际持续了10(4+6) s。在开始计算持续时间后,如果10个心动周期中一直有6个满足频率识别标准并且保持至所设定的持续时间终了(按上述举例为6 s),则在持续时间终了时即开始治疗程序,否则需重新满足连续10个心动周期中有8个符合频率标准方才开始计算持续时间。同样情况下,如果使用Medtronic公司的Jewel系列产品,则需设频率标准为400 ms,持续时间为24个心动周期(10秒钟应为25个心动周期,但可程控参数中没有25这个值),如果24个心动周期连续满足识别标准即开始治疗程序。此种ICD的频率标准与持续时间是同时得到满足的,也就是说,其持续时间的计算起点与CPI公司的不同。关于VF持续时间的设置亦举例说明。假如VF频率标准拟定为200次/分,希望持续6 s开始治疗,CPI公司产品的设置方法与VT相同,即频率为200次/分,持续时间为3 s(因10个心动周期占用时间为3 s);Medtronic公司的产品需设频率标准为300 ms、持续时间为15/20。后者的含义是连续20个心动周期(持续6 s)中15个能满足所设定的频率标准周长即达到诊断条VF的诊断只有心率及持续时间的标准,而VT的诊断除了上述的基本标准外,还有辅助标准供选用,以便与窦性心动过速及心房颤动相鉴别。常用者有快速心律失常的突发性(Onset不足。
VF的诊断只有心率及持续时间的标准,而VT的诊断除了上述的基本标准外,还有辅助标准供选用,以便与窦性心动过速及心房颤动相鉴别。常用者有快速心律失常的突发性(Onset)和稳定性(Stability),目前有的ICD增设了QRS群波宽度,用以鉴别VT和室上性心动过速(SVT)。
突发性是指心动过速开始的联律间期较窦性心律周长缩短的程度,通常以百分率表示。VT都是突发突止的,而窦性心动过速一般都是逐渐发生、逐渐终止的。因此两者可以用突发性标准进行鉴别。突发性的具体设定系根据患者心动过速发生时联律间期的规律来确定,比如每次联律间期较窦性心率周长短25%,则可设其突发性为20%。一旦选设了突发性,则需同时达到初始识别标准的心率、持续时间以及突发性才满足VT的诊断条件。
稳定性是指心动过速不同周长间差别的最大允许范围,也就是心动过速时心律的规整性,通常以毫秒表示。心房颤动也会出现快速心室率,但心律不规整,而VT时心律规整或仅有轻度不齐。因此,两者可以稳定性鉴别之。假如我们观察到既往VT时各周长间差别不超过30 ms,可将稳定性设为40~50 ms。选用了稳定性标准后,必须同时达到初始识别标准的心率、持续时间及稳定性才满足VT的诊断条件。患者若同时有SVT可加用QRS波群宽度标准予以鉴别。
ICD由脉冲发生器和电极导线两部分组成。脉冲发生器的主要构件包括电池、感知与起搏线路和电容器。电池供给能量,电容器的作用是充电、放电,感知与起搏线路则负责心电监测、识别室性心动过速(VT)、心室颤动(VF)及心动过缓,发放起搏脉冲。早期的电极为心外膜电极,需开胸安装,以后改进为皮下电极,现在进展为经静脉心内膜电极,从而使埋藏术大为简化。电极导线一方面将感知的信号传入脉冲发生器,同时将起搏信号传递到心脏。由于电极型号的不同,电击可通过经静脉电极与脉冲发生器的机壳完成,也可由经静脉心内膜电极本身完成。
ICD的基本功能是识别和处理快速心律失常及心动过缓,其识别和处理心动过缓的工作原理与抗心动过缓起搏器相同。此处只介绍识别及处理快速心律失常的原理。
1.1 快速心律失常的识别
以快速心律失常的心率(或与其相应的周长)及持续时间(或快速心律失常的周期数)作为基本识别标准,其又有初始识别及再识别之分,初始识别标准用于每阵快速心律失常发作的首次判断,再识别标准用于经ICD治疗而未终止的快速心律失常的判断。VT与VF主要通过频率区分。不同厂家对上述识别标准的表示方法有所不同,比如CPI公司直接以频率(次/分)和持续时间(s)表示,而Medtronic公司则以周长代替频率,以心动周期的个数表示持续时间。以下举例说明ICD是如何识别快速心律失常的。
假如设定VT的识别标准为150 次/分,并希望VT发作持续时间为10 s时ICD即开始治疗。如果所用的ICD为CPI公司的Ventak PRx Ⅲ,频率标准可直接设定为150次/分,持续时间设定为6 s,这是因为持续时间的计算是在满足频率标准后才开始的。ICD持续监测心率的过程即是将每一个心动周长与频率识别标准的周长相比较的过程,当ICD在连续的10个心动周长中判断有8个等于或短于所设定的识别标准周长(频率标准150次/分,周长即为400 ms)时,ICD即确定满足VT诊断标准并开始计算持续时间。显然,计算持续时间之前心动过速已经持续了至少10个心动周期,以上述150次/分为识别标准,则10个心动周期应为4 s,所以持续时间虽然设定为6 s而VT实际持续了10(4+6) s。在开始计算持续时间后,如果10个心动周期中一直有6个满足频率识别标准并且保持至所设定的持续时间终了(按上述举例为6 s),则在持续时间终了时即开始治疗程序,否则需重新满足连续10个心动周期中有8个符合频率标准方才开始计算持续时间。同样情况下,如果使用Medtronic公司的Jewel系列产品,则需设频率标准为400 ms,持续时间为24个心动周期(10秒钟应为25个心动周期,但可程控参数中没有25这个值),如果24个心动周期连续满足识别标准即开始治疗程序。此种ICD的频率标准与持续时间是同时得到满足的,也就是说,其持续时间的计算起点与CPI公司的不同。关于VF持续时间的设置亦举例说明。假如VF频率标准拟定为200次/分,希望持续6 s开始治疗,CPI公司产品的设置方法与VT相同,即频率为200次/分,持续时间为3 s(因10个心动周期占用时间为3 s);Medtronic公司的产品需设频率标准为300 ms、持续时间为15/20。后者的含义是连续20个心动周期(持续6 s)中15个能满足所设定的频率标准周长即达到诊断条VF的诊断只有心率及持续时间的标准,而VT的诊断除了上述的基本标准外,还有辅助标准供选用,以便与窦性心动过速及心房颤动相鉴别。常用者有快速心律失常的突发性(Onset不足。
VF的诊断只有心率及持续时间的标准,而VT的诊断除了上述的基本标准外,还有辅助标准供选用,以便与窦性心动过速及心房颤动相鉴别。常用者有快速心律失常的突发性(Onset)和稳定性(Stability),目前有的ICD增设了QRS群波宽度,用以鉴别VT和室上性心动过速(SVT)。
突发性是指心动过速开始的联律间期较窦性心律周长缩短的程度,通常以百分率表示。VT都是突发突止的,而窦性心动过速一般都是逐渐发生、逐渐终止的。因此两者可以用突发性标准进行鉴别。突发性的具体设定系根据患者心动过速发生时联律间期的规律来确定,比如每次联律间期较窦性心率周长短25%,则可设其突发性为20%。一旦选设了突发性,则需同时达到初始识别标准的心率、持续时间以及突发性才满足VT的诊断条件。
稳定性是指心动过速不同周长间差别的最大允许范围,也就是心动过速时心律的规整性,通常以毫秒表示。心房颤动也会出现快速心室率,但心律不规整,而VT时心律规整或仅有轻度不齐。因此,两者可以稳定性鉴别之。假如我们观察到既往VT时各周长间差别不超过30 ms,可将稳定性设为40~50 ms。选用了稳定性标准后,必须同时达到初始识别标准的心率、持续时间及稳定性才满足VT的诊断条件。患者若同时有SVT可加用QRS波群宽度标准予以鉴别。
- 基于中颖SH79F164单片机的电子血压计应用(07-01)
- 欧姆龙血压计如何实现低成本设计(12-25)
- 最新血氧仪低功耗设计方案(09-17)
- 无针电子针灸器的制作(01-10)
- 人体成分测量装置的设计(09-18)
- 采用 MAXQ2010的低功耗医学数据记录仪的设计(03-08)