通用人体呼吸气体检测电子鼻仪器设计
时间:01-13
来源:互联网
点击:
软件模块
仪器软件设计部分主要包括气体进样控制流程、PCA主成份分析与判断流程、数据传输控制流程。如图2所示为软件执行的具体流程。
在气体进样控制流程中包括直接进样流程与吸附进样流程,两个流程的切换是基于对气体浓度的定性判断。同时,气路切换是由LPC2478控制步进电机带动六通阀实现的。
吸附进样相比于直接进样增加了对EDU的温控流程,并分阶段实现对低浓度样本气体的检测。而在进样过程结束之后,系统均会程序化执行“降温延时”与“冲洗气路”流程,为下一次进样做好准备。
进样过程最后,系统都将把气体传感器阵列输出的响应值实时描绘在TFT液晶屏的T(时间)-C(浓度)坐标系上,该采样过程是由LPC2478的Timer2定时产生中断实现的。传感器响应曲线将在“数据分析”的第一页重现,并对一次采样结束之后的数据作主成份分析,在标准气体实验的基础上,可以通过该分析过程判断出样本呼吸气体中的主要成分,并将LPC2478判断的结果显示在液晶屏幕上。
通过“数据传输”功能,可以把传感器阵列对样本气体的响应值记录下来,在USB HOST控制器的管理下,将需要记录的数据值写入USB设备中,这些数据可以作为PC人工神经网络(ANN)分析的原始数据,在提供训练案例的前提下,也希望PC通过ANN分析能给出更为准确的诊断结果。系统也可以对SD卡读写数据,其中记录了每一次样本气体分析的数据和PCA分析的结果,这有利于为用户形成长期观察的病历记录。通过UART,系统与PC相连接,在PC上利用自己开发编写的串口通讯软件对电子鼻仪器的运行状态进行实时监控,并以数据库的形式对这些数据进行管理。
以上过程在涉及到具体操作时,系统都将利用LPC2478强大的彩色液晶控制器与用户实现交互,使整个呼吸气体检测的过程透明化,用户可以通过系统的提示,经过简单的操作完成对身体健康状况的监测。如图3所示为液晶显示的主要操作界面。
结语
本设计的通用人体呼吸气体检测电子鼻仪器是定位于家庭使用,为那些长期酗酒、吸烟和因此导致呼吸道、胃肠道不适的人群以及其他生理性、病理性胃肠道不适或炎症的用户群体设计,仪器采用了NXP最新研发的LPC2478微处理器,充分利用其彩色液晶控制器、内部ADC、DAC、PWM、Timer等功能模块,完成对呼吸气体的检测和基于PCA的诊断分析,并结合USB HOST与SD读写控制器完成数据的移植与传输,使整个电子鼻检测仪器的功能得到完善。图4为呼吸气体检测电子鼻仪器的实验样机。
用户在使用该仪器对自己的呼吸气体进行检测之前,只需要用气袋收集空腹时的“吹气”,然后按照系统操作的提示完成进样与检测,易于使用,并通过无创和低成本的操作过程完成对自身健康状况的检测与记录。
仪器软件设计部分主要包括气体进样控制流程、PCA主成份分析与判断流程、数据传输控制流程。如图2所示为软件执行的具体流程。
在气体进样控制流程中包括直接进样流程与吸附进样流程,两个流程的切换是基于对气体浓度的定性判断。同时,气路切换是由LPC2478控制步进电机带动六通阀实现的。
吸附进样相比于直接进样增加了对EDU的温控流程,并分阶段实现对低浓度样本气体的检测。而在进样过程结束之后,系统均会程序化执行“降温延时”与“冲洗气路”流程,为下一次进样做好准备。
进样过程最后,系统都将把气体传感器阵列输出的响应值实时描绘在TFT液晶屏的T(时间)-C(浓度)坐标系上,该采样过程是由LPC2478的Timer2定时产生中断实现的。传感器响应曲线将在“数据分析”的第一页重现,并对一次采样结束之后的数据作主成份分析,在标准气体实验的基础上,可以通过该分析过程判断出样本呼吸气体中的主要成分,并将LPC2478判断的结果显示在液晶屏幕上。
通过“数据传输”功能,可以把传感器阵列对样本气体的响应值记录下来,在USB HOST控制器的管理下,将需要记录的数据值写入USB设备中,这些数据可以作为PC人工神经网络(ANN)分析的原始数据,在提供训练案例的前提下,也希望PC通过ANN分析能给出更为准确的诊断结果。系统也可以对SD卡读写数据,其中记录了每一次样本气体分析的数据和PCA分析的结果,这有利于为用户形成长期观察的病历记录。通过UART,系统与PC相连接,在PC上利用自己开发编写的串口通讯软件对电子鼻仪器的运行状态进行实时监控,并以数据库的形式对这些数据进行管理。
以上过程在涉及到具体操作时,系统都将利用LPC2478强大的彩色液晶控制器与用户实现交互,使整个呼吸气体检测的过程透明化,用户可以通过系统的提示,经过简单的操作完成对身体健康状况的监测。如图3所示为液晶显示的主要操作界面。
结语
本设计的通用人体呼吸气体检测电子鼻仪器是定位于家庭使用,为那些长期酗酒、吸烟和因此导致呼吸道、胃肠道不适的人群以及其他生理性、病理性胃肠道不适或炎症的用户群体设计,仪器采用了NXP最新研发的LPC2478微处理器,充分利用其彩色液晶控制器、内部ADC、DAC、PWM、Timer等功能模块,完成对呼吸气体的检测和基于PCA的诊断分析,并结合USB HOST与SD读写控制器完成数据的移植与传输,使整个电子鼻检测仪器的功能得到完善。图4为呼吸气体检测电子鼻仪器的实验样机。
用户在使用该仪器对自己的呼吸气体进行检测之前,只需要用气袋收集空腹时的“吹气”,然后按照系统操作的提示完成进样与检测,易于使用,并通过无创和低成本的操作过程完成对自身健康状况的检测与记录。
ARM 电子 神经网络 USB 步进电机 传感器 DAC 电路 嵌入式 NXP 总线 ADC PWM 电阻 开关电源 相关文章:
- 人体成分测量装置的设计(09-18)
- 基于ARM的脉象仪系统设计与实现(06-09)
- 基于ARM的脑电信号采集系统(06-16)
- 新型便携式心电监测仪的软硬件设计(03-08)
- CMOS图像通道在超声诊断仪中的应用(03-25)
- 基于ARM9的无线多床位心电监护仪的设计(04-09)