通用人体呼吸气体检测电子鼻仪器设计
时间:01-13
来源:互联网
点击:
通过人体的体液检测健康状况,这在临床应用中已非常成熟,也确实为诊断过程提供了十分宝贵的信息,然而体液检测一方面需要依赖于检测试剂,成本较高,另一方面大部分检测手段基于“有创”过程,均不适合进行较高频率的检测。作为身体健康状况的另一条反映途径,人体的呼吸气体(肺呼吸气体与消化道挥发气体)也能反映一些重要的生理过程与代谢信息,且检测的方法可以在一定程度上弥补前者的不足。
本设计的目的是利用以ARM7TDMI-S为核心的LPC2478处理器实现对电子鼻仪器系统的控制、对气体检测信号的分析与判别,以及实现在脱离PC机的情况下,提供友好的图形用户交互接口(GUI),使用户通过自己的操作就能掌握并记录自己的身体健康状况。
本设计初衷在于能将本系统应用于家庭成员人体健康体征的监测,并主要着眼于检测人体呼吸气体中的乙醇、芳香烃类气体化合物和由人体消化道挥发出的气体硫化物、胺化物等的含量,从而为酗酒、吸烟人群以及呼吸道、胃肠道不适人群的健康状况作直观和方便的检查。系统在线实现对气体检测信号的主成份分析(PCA),而由于需要大量的样本训练过程,故系统将人工神经网络(ANN)对气体进一步分析的原始数据通过USB Host写入U盘中,以便于数据的移植,而将数据拷贝至SD存储卡中,则便于将用户长期观察的结果存档。
系统实现
系统对人体呼吸气体的检测主要是通过高效的气路及其控制得以实现的。对于进样的气体,系统有两种不同的检测手段:对于较高浓度的气体,步进电机驱动六通阀,切换至“直接进样”状态,即气体由进样口进入气室,在气室中与处于加热状态的金属氧化物气体传感器阵列(Gas Sensor Array)接触;而对于较低浓度的气体,六通阀将切换至“吸附进样”状态,即气体从进样口进入气路之后,在吸附解吸附单元(EDU)中进行富集(常温),并在富集程序完毕之后,载气由载气口进入,将标志物气体从PID控温状态下的EDU中带出,并进入气室,这是本系统实现气体检测功能基本的检测原理与流程。在这个过程中需要LPC2478对气路状态(六通阀切换、EDU控温、真空泵抽气速率与气体传感器阵列信号采样等)进行全程监控与测量,并通过TFT液晶、键盘阵列与用户实现友好的交互。
在检测得到气体信号之后,需要LPC2478对数据进行主成份分析(PCA),通过数学建模的方法,本设计改进了传统PCA分析的算法,并将数据变换为在两维主成份坐标系中的“点群”,利用这些点群,对样本气体中的主成份进行聚类判断。
在气体检测的整个过程中,均需要为气体在气路中的流动提供动力,本系统利用LPC2478的10位DAC对真空泵的驱动电路进行控制,在实现对真空泵转速调节的同时,对气路中气体的流动速度进行较为精确的控制,一方面适应“吸附进样”过程中气体吸附的速率,另一方面又能兼顾气体与传感器充分接触时传感器的响应时间。
硬件平台
该呼吸气体检测电子鼻实验样机采用了广州致远电子有限公司生产的SmartARM2400开发板和项目小组自制的扩展板,以实现对气路硬件模块的控制和模拟信号的前置处理等功能。气路硬件模块包括吸附解吸附单元、真空泵、六通阀、电磁阀、步进电机、气室(TGS系列金属氧化物气体传感器阵列)以及气体采样袋等。系统的硬件设计框图如图1所示。
该电子鼻仪器采用的嵌入式系统微控制器是由NXP研发生产、基于ARM7TDMI-S内核的LPC2478,它具有512KB片上Flash程序存储器,98KB片内SRAM,双AHB总线系统,先进的向量中断控制器(VIC),支持多达32个向量中断,优秀的真彩液晶控制器,支持STN和TFT显示屏的显示,具有包括USB Host、USB OTG、2通道CAN、SPI、2个SSP和4路UART控制器等在内的串行接口,以及3个I2C总线接口和I2S音频接口。此外,它还具有SD/MMC存储卡接口、10位ADC、10位DAC、2个PWM模块、带有独立电源的RTC、4个通用定时器/计数器模块和丰富的可灵活配置上拉/下拉电阻的GPIO引脚。可以说,LPC2478优越的性能与灵活多样的外围模块设计为其在医疗仪器与检测设备中的应用奠定了扎实的基础。
系统设计中,主要应用到LPC2478功能模块有彩色液晶控制器、RTC、PWM、USB Host、SD/MMC控制器、ADC、DAC、UART、Timer、GPIO等。将LPC2478的控制、输入模块与扩展板上的气体、温度信号采样电路、D/A控制真空泵驱动模块、PWM步进电机控制模块、键盘阵列模块、EDU与气体传感器加热控制模块以及电磁阀控制模块相互连接,从而构成整台电子鼻检测仪器的硬件基础。整台仪器是由220V的开关电源供电。
在对呼吸气体检测的实际应用中,气体传感器的选择与气室的制作是该仪器设计的关键,表1列出的是样机设计阶段所采用的金属氧化物传感器,敏感气体与相应的气体浓度检测范围。
在实际的人体呼吸气体中,标志气体的浓度是比较低的,然而电子鼻检测技术的应用,能够显著地降低仪器对标志气体的检测下限,约为0.1~0.5ppm。在单个传感器无法完成对低浓度气体的检测时,传感器阵列检测技术、EDU高效富集作用和气体在气路中流动速度的优化都能帮助仪器完成对呼吸气体检测的任务。
本设计的目的是利用以ARM7TDMI-S为核心的LPC2478处理器实现对电子鼻仪器系统的控制、对气体检测信号的分析与判别,以及实现在脱离PC机的情况下,提供友好的图形用户交互接口(GUI),使用户通过自己的操作就能掌握并记录自己的身体健康状况。
本设计初衷在于能将本系统应用于家庭成员人体健康体征的监测,并主要着眼于检测人体呼吸气体中的乙醇、芳香烃类气体化合物和由人体消化道挥发出的气体硫化物、胺化物等的含量,从而为酗酒、吸烟人群以及呼吸道、胃肠道不适人群的健康状况作直观和方便的检查。系统在线实现对气体检测信号的主成份分析(PCA),而由于需要大量的样本训练过程,故系统将人工神经网络(ANN)对气体进一步分析的原始数据通过USB Host写入U盘中,以便于数据的移植,而将数据拷贝至SD存储卡中,则便于将用户长期观察的结果存档。
系统实现
系统对人体呼吸气体的检测主要是通过高效的气路及其控制得以实现的。对于进样的气体,系统有两种不同的检测手段:对于较高浓度的气体,步进电机驱动六通阀,切换至“直接进样”状态,即气体由进样口进入气室,在气室中与处于加热状态的金属氧化物气体传感器阵列(Gas Sensor Array)接触;而对于较低浓度的气体,六通阀将切换至“吸附进样”状态,即气体从进样口进入气路之后,在吸附解吸附单元(EDU)中进行富集(常温),并在富集程序完毕之后,载气由载气口进入,将标志物气体从PID控温状态下的EDU中带出,并进入气室,这是本系统实现气体检测功能基本的检测原理与流程。在这个过程中需要LPC2478对气路状态(六通阀切换、EDU控温、真空泵抽气速率与气体传感器阵列信号采样等)进行全程监控与测量,并通过TFT液晶、键盘阵列与用户实现友好的交互。
在检测得到气体信号之后,需要LPC2478对数据进行主成份分析(PCA),通过数学建模的方法,本设计改进了传统PCA分析的算法,并将数据变换为在两维主成份坐标系中的“点群”,利用这些点群,对样本气体中的主成份进行聚类判断。
在气体检测的整个过程中,均需要为气体在气路中的流动提供动力,本系统利用LPC2478的10位DAC对真空泵的驱动电路进行控制,在实现对真空泵转速调节的同时,对气路中气体的流动速度进行较为精确的控制,一方面适应“吸附进样”过程中气体吸附的速率,另一方面又能兼顾气体与传感器充分接触时传感器的响应时间。
硬件平台
该呼吸气体检测电子鼻实验样机采用了广州致远电子有限公司生产的SmartARM2400开发板和项目小组自制的扩展板,以实现对气路硬件模块的控制和模拟信号的前置处理等功能。气路硬件模块包括吸附解吸附单元、真空泵、六通阀、电磁阀、步进电机、气室(TGS系列金属氧化物气体传感器阵列)以及气体采样袋等。系统的硬件设计框图如图1所示。
该电子鼻仪器采用的嵌入式系统微控制器是由NXP研发生产、基于ARM7TDMI-S内核的LPC2478,它具有512KB片上Flash程序存储器,98KB片内SRAM,双AHB总线系统,先进的向量中断控制器(VIC),支持多达32个向量中断,优秀的真彩液晶控制器,支持STN和TFT显示屏的显示,具有包括USB Host、USB OTG、2通道CAN、SPI、2个SSP和4路UART控制器等在内的串行接口,以及3个I2C总线接口和I2S音频接口。此外,它还具有SD/MMC存储卡接口、10位ADC、10位DAC、2个PWM模块、带有独立电源的RTC、4个通用定时器/计数器模块和丰富的可灵活配置上拉/下拉电阻的GPIO引脚。可以说,LPC2478优越的性能与灵活多样的外围模块设计为其在医疗仪器与检测设备中的应用奠定了扎实的基础。
系统设计中,主要应用到LPC2478功能模块有彩色液晶控制器、RTC、PWM、USB Host、SD/MMC控制器、ADC、DAC、UART、Timer、GPIO等。将LPC2478的控制、输入模块与扩展板上的气体、温度信号采样电路、D/A控制真空泵驱动模块、PWM步进电机控制模块、键盘阵列模块、EDU与气体传感器加热控制模块以及电磁阀控制模块相互连接,从而构成整台电子鼻检测仪器的硬件基础。整台仪器是由220V的开关电源供电。
在对呼吸气体检测的实际应用中,气体传感器的选择与气室的制作是该仪器设计的关键,表1列出的是样机设计阶段所采用的金属氧化物传感器,敏感气体与相应的气体浓度检测范围。
在实际的人体呼吸气体中,标志气体的浓度是比较低的,然而电子鼻检测技术的应用,能够显著地降低仪器对标志气体的检测下限,约为0.1~0.5ppm。在单个传感器无法完成对低浓度气体的检测时,传感器阵列检测技术、EDU高效富集作用和气体在气路中流动速度的优化都能帮助仪器完成对呼吸气体检测的任务。
ARM 电子 神经网络 USB 步进电机 传感器 DAC 电路 嵌入式 NXP 总线 ADC PWM 电阻 开关电源 相关文章:
- 人体成分测量装置的设计(09-18)
- 基于ARM的脉象仪系统设计与实现(06-09)
- 基于ARM的脑电信号采集系统(06-16)
- 新型便携式心电监测仪的软硬件设计(03-08)
- CMOS图像通道在超声诊断仪中的应用(03-25)
- 基于ARM9的无线多床位心电监护仪的设计(04-09)