面向SiP封装的层压板与LTCC板射频模块设计
层压板是一种成本更低的材料,用注模成形方法可以低成本地保护引线接合的内核。陶瓷需要更昂贵的围堰填充(dam and fill)操作,还需要一个取放用的盖子。目前,层压板可提供相似或更小的线宽和间隔。在50 微米的大批量生产时,层压板可提供65 微米线宽和间隔,而很多LTCC 使用80-100 微米,有些在内层上可低达60 微米。另外,层压板使用更厚的金属,传导性更高,从而使电阻和电感都更低。在陶瓷中实现相同的电阻和电感则需要更大的线宽。层压板解决方案还提供更好的附属可靠性,因为它们的热膨胀系数(TCE)接近于与之匹配的印刷电路板。陶瓷的TCE 为7 ×10-4,而层压板和匹配的印刷电路板的TCE 在12 ×10-4和14 ×10-4之间。在为模块连接所做的二次回流焊期间,互连焊点的应力更低。另外,如果印刷电路板是双面的,可能还需要第三次回流焊。在产品工作环境的热条件下,匹配的TCE 也使印刷电路板上的机械互连焊点的应力更低。
陶瓷模块一般采用焊接凸块或焊球,封装为BGA,来帮助降低由于陶瓷和印刷电路板的TCE 不匹配而造成的互连焊点应力。另外,关键的连接点被排成一行,并远离应力较高的模块角。它们还可以进行复制以提高可靠性。封装尺寸对于可靠性也是很关键的。不过,层压板的可靠性是不容易获得的。
阻容元件的嵌入
新近的技术进步已经开始模糊了陶瓷和层压板之间的区别。
陶瓷的一项优势是能够嵌入电容器。多种新技术也可以在层压板内部嵌入电容器。目前的技术仅适合于大容量电容器。它们使用X7R 电介质或非常薄的亚微米薄膜。不过,嵌入式小容量电容器正在开始出现。
这种技术的样品已经得到了验证,不过目前它还不具备大批量制造的成熟工艺。预计有嵌入式电容器的层压模块将于2004 年进入批量生产。
此外,这两种工艺都可以嵌入电阻。Shipley 公司的工艺局限于材料整体的表面阻抗都相同。Dupont 公司的工艺可以混合并匹配各种表面阻抗的涂料,仅比单一涂料方式多增加一点成本。目前,如果嵌入式无源器件的数量接近每平方厘米6个,那么这两种技术都很有成本效益。不过,元件数量很少时往往成本更高,只有增大批量才有望降低成本。
在陶瓷基板这一方面,已经开始出现各种针对陶瓷的注模成形工艺。通过对多种影响可靠性的因素进行优化,降低了陶瓷模块的总封装成本。
尽管层压板的介电损失更高,但它的金属部分比LTCC 好。LTCC 在介电损失方面性能更好,但牺牲了金属连接性。它焙烧的金属层更薄,损耗更大。
滤波器等器件的集成
层压板滤波器可用于2.4GHz 和5GHz 的蓝牙应用和WLAN 应用(图2)。这些频率的平衡-不平衡变换器和其它装置也已经开发成功。这些器件降低了总封装成本,同时能为接收器提供射频选择性。滤波器保护接收器免受PCS/DCS 和蜂窝通信的影响。它还为发射器和工作在5GHz 范围的802.11a 等系统提供了一定的谐波衰减。

图2、层压板2.4GHz WLAN 和蓝牙嵌入式滤波器滤波的数量取决于接收器的预期保护级别、距离和动态范围,以及低噪声放大器(LNA)的压缩点。不过,压缩点与LNA 的电流消耗密切相关。
滤波器无法对带内干扰源提供防护,如2.4GHz 手机和泄漏微波的微波炉等。LNA 压缩是对带内干扰源的唯一防护方法。滤波可以对带外干扰源提供防护。LNA 压缩和滤波器选择性之间仍然存在着一个平衡问题。
假如没有更高的插入损耗,那么对于低P1dB LNA,也许无法实现充分的滤波。 不过,由于插入损耗在LNA 的前面,因此它将影响总体接收器噪声值。这种更高的滤波器插入损耗需要的LNA 噪声值(以满足总体接收器灵敏度)也许是无法实现的。使用高通滤波器来代替传统的带通滤波器,为在基板中嵌入滤波器带来了机会。这样的优点包括消除了很多元件、需要的空间更小、材料清单成本降低,以及通过使用更便宜的模套(moldcap)来降低成本。
陶瓷滤波器的外形较高,而且需要成本更高、带盖子的围堰填充工艺。先进的设计可以使层压式滤波器具有足够高的选择性,无需再用陶瓷滤波器,这样使高度更低,同时还是一种减少成本的替代方案。
其它集成工艺

图3、带有集成式天线和屏蔽的蓝牙模块集成式天线是另一种可以降低总体系统成本的技术。
图3描绘了一种全蓝牙模块,它需要外部参考信号。它包含一个具有数字功能和射频功能的内核。该设计包括若干嵌入式滤波器和一个巴伦平衡-不平衡变换器。天线被集成到了封装中。它采用93 脚BGA 封装,尺寸为15 ×15 ×6.5 mm,不过高度可以降至4 mm。
嵌入式屏蔽也是降低成本的一个因素。屏蔽可能是用来降低辐射,从而满足规范要求,
