微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 半桥配置隔离端的供电选项和基本设计制约因素

半桥配置隔离端的供电选项和基本设计制约因素

时间:09-02 来源:互联网 点击:
专用隔离电源

隔离栅极驱动的另一种方法,是使用隔离器传输时序信息。光耦合器利用光,跨越隔离栅将时序数据传输至光电晶体管或光电二极管。内部二极管的光输出量随着器件的老化和/或温度而下降,产生时序移位,因而死区时间需要更宽的裕量4。作为光耦合器的替代器件,数字隔离器一般通过感性耦合或容性耦合传输时序信息,从而有效避免了器件老化产生的时序移位,同时相比光耦合器可大幅降低温度产生的时序移位。采用光耦合器和数字隔离器时,输出缓冲器中的已传送信号确定栅极的最终驱动强度。该缓冲器可集成在隔离器封装内,也可部署在封装外。高压电平转换器使用上拉结构将时序数据传送至高端,可处理高达几百V的电压。如果半桥电压发生负振铃,则高压电平转换器可能会闩锁,而数字隔离器或光耦合隔离器不会产生这种情况。

为缓冲器供电的最直观的方法,是为半桥的每一个浮动区域提供专用的隔离式DC-DC转换器。对于多引脚系统,低端栅极驱动器可以共享一个电压源,只要有足够的电流输出即可,如图2中的系统示例所示。

专用隔离电源设置不存在占空比或最小开关频率要求,并且隔离式栅极驱动器的输入端可独立受控,允许调谐死区时间。但由于需使用额外的元器件,这种解决方案的代价是具有较大的尺寸和较高的成本。可利用反激式转换器或正向转换器等集成变压器的拓扑,在系统级创建一个隔离式电源。此外,还可采用单芯片模块,比如Recom提供的产品——这些产品针对隔离高电压设计5。

半桥自举配置

向上驱动栅极时,除了静态电流,隔离式栅极驱动器的输出端主要从供电轨获取电流。一旦IGBT或MOSFET的栅极电压到达供电轨,功耗便降为最低,因为栅极本质上是一个电容。对于高端驱动器而言,高端MOSFET导通时,该吸电流与半桥电压拉至总线电压的时间相吻合。这还意味着吸电流达到最大值前一刻,高端接地通过低端功率开关连接至低端接地。在高端供电轨上使用单个二极管以及数值适中的大电容后,便可提供临时电压源,如采用ADuM3223的图4所示。该图中,电阻与自举二极管串联,以便控制峰值充电电流6。


图4. 在高端供电轨上使用单个二极管以及数值适中的大电容

自举电容在低端开关导通期间充电并快速放电,以便填满栅极电容;但由于高端驱动器的静态电流,它在高端开关导通期间将缓慢放电。这会对系统占空比和开关频率产生限制作用7。只要有足够的时间来对自举电容充电,并且高端开关在超过电容所能支持的时间内未导通,则该解决方案的成本和尺寸优势便能凸显,特别是用于多相系统时。另外,在上电时可同时开启低端开关,从而一次充电多个自举电容。

集成式电源和栅极驱动器

解决方案向更小尺寸的自然演化过程是创建集成隔离式电源和栅极驱动器功能的单片IC。传输隔离式电源的最高效方法是通过感性耦合。对于支持这样一个系统来说,光耦合器和容性耦合器所需的占位面积过大,工作速度过慢,并且功耗过高。对于完全集成式隔离电源和栅极驱动器拓扑电路而言,可在IC中部署小型芯片级电感。采用ADuM5230的这类系统如图5所示。该解决方案集成传输时序信息的变压器线圈,以及传输功率至高端驱动器的线圈,无需在高端使用额外的外部隔离式电源8。外部缓冲器可增加峰值电流输出,允许驱动更大的栅极电容。受限于效率,最大功耗(从而开关频率和/或最大栅极电荷负载)也受到限制。随着技术进步,满足更高系统要求的单芯片解决方案将会应运而生。


图5.内部隔离电源示例

撇开功耗方面的限制,该集成式隔离电源和栅极驱动器系统具有出色的解决方案尺寸,同时移除了占空比和最低开关频率的限制。

小结

为半桥配置的隔离端供电存在一定难度,但有很多拓扑可供设计人员选择。栅极驱动变压器在器件数方面占有优势,但受限于驱动信号的复杂程度,而且磁芯的动态特性对其也有限制作用。专用隔离电源使占空比和频率要求不复存在,但缺点是成本较高、解决方案尺寸较大。如果可以限制占空比和开关频率,则半桥自举配置便是一个高性价比选择,可大幅减少器件数,降低解决方案成本。目前已出现高度集成的解决方案,这类解决方案利用内部变压器完成功率传输,节省了尺寸,减少了器件数。有了如此众多的拓扑,设计人员便拥有创建鲁棒半桥解决方案的工具。

参考文献

[1] C. Hu, “Modern Semiconductor Devices for Integrated Circuits”. Prentice Hall; 2009

[2] Concept, “IGBT and MOSFET Drivers Correctly Calculated”, Appl. Note An-1001, pp. 1.

[3] R. Ridley, “Gate Drive Design Tips,” Power Systems Design Europe, 2006, pp. 14-18.

[4] R. Ripas, “Gauging LED Lifetime in Optocouplers”, Machine Design, Sep 20, 2012.

[5] Recom, “ECONOLINE DC/DC-Converter,” RP Series datasheet, Rev. 0, 2014.

[6] Analog Devices, Inc., “ADuM3223”, Datasheet, Rev. D, http://www.analog.com/en/interfa ... oducts/product.html, 2014.

[7] J. Adams, “Bootstrap Component Selection for Control IC’s”, International Rectifier, Design Tip DT 98-2.

[8] Analog Devices, Inc., “ADuM5230”, Datasheet, Rev. B, http://www.analog.com/en/interfa ... oducts/product.html, 2013.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top