采用nvSRAM确保企业级SSD故障时电源可靠性
时间:11-27
来源:互联网
点击:
超级电容
超级电容器(supercapacitor或ultracapacitor,抑或为双电层电容器EDLC)是相对于任何其它可用电容类型能够显著提高能量密度的电容,并且可作为电池备份应用中可靠的电池替代产品。
但是,超级电容器存在可靠性问题,已知其在长期可靠性方面存在不足,这一点跟铝电解电容器比较相像。超级电容器的使用寿命有限,因为经过一段时间在工作温度下电解质会从元件挥发,从而造成元件磨损。超级电容器的性能会随着电解质的损失而逐渐下降,最后几乎没有什么警告甚至毫无警告就会彻底失效。此外,工作电压越高、工作和非工作温度环境越差,电解质损失率也就越高。环境工作温度每升高10℃,超级电容器的预期使用寿命就要削减大约一半。
超级电容器故障模式包括:
●电化学分解压力过大造成单元开裂。
●电压和温度在单元内部生成气压,随时间推移慢慢增大,压力达到一定极限,就会造成机械扩散通常是外壳槽开裂。
长期在较高工作温度下使用,电解质的水分蒸发,等效串联电阻(ESR)会增加。基本故障模式就是ESR增加的开裂模式。所有超级电容器都带有警告信息:“使用此电容器时应在设计中采用适当的安全措施,包括冗余和保护措施等。”
分立电容器
分立电容器组可提供更可靠的选择,但需要更小心的设计。基于分立电容器的保持电路采用并行连接的分立电容器组。所用的分立电容器可以是铝电容、钽电容或铌电容。它不像超级电容那么小型化,分立解决方案的电容尺寸比会占据大量板卡空间。此外,我们知道钽电容对短路和冒烟故障比较敏感。
nvSRAM解决方案
非易失性SRAM(nvSRAM)对于企业级SSD的优势在于能无需使用或尽可能少用超级电容或分立电容组,并能通过单芯片的免电池非易失性RAM技术就能为传输中的SDRAM缓存数据和元数据可靠备份。以下简要介绍nvSRAM的工作,随后将介绍在企业级SSD中采用nvSRAM器件的具体细节。
非易失性SRAM(nvSRAM)
nvSRAM在单个器件中完美结合了两大CMOS技术:SRAM和SONOS非易失性技术。在正常加电系统工作条件下,nvSRAM就像传统SRAM一样工作。IC的SRAM部分以高达20ns的存取时间进行读写,采用标准的异步SRAM信号和时序。如果出现电源故障,那么芯片可智能检测到威胁,并自动将SRAM数据副本保存在非易失性存储器中,而且能保持20年以上不改变。加电RECALL后,IC将数据副本返回到SRAM中,系统就能刚好从上次停止的地方重新开始工作,从而确保快速SRAM绝不会丢失数据。此外,最新高密度(16Mb)nvSRAM还支持高带宽DDR NAND闪存(ONFI 3.0/Toggle 2.0)接口。
SRAM和内部非易失性阵列之间的传输完全并行(单元对单元),这就能在8ms乃至更少时间内完成STORE操作,用户根本毫无感觉。该IC系列的大多数版本还为用户提供可控的软件STORE和RECALL启动命令以及用户可控的硬件STORE启动命令。
nvSRAM是高度可靠的产品,采用业经验证的大容量CMOS + SONOS工艺。此外,它在军事、商业、存储、医疗和工业应用中也有着20多年的历史。
图3显示了nvSRAM的概念,它将快速SRAM元件和非易失性元件在单个单元中整合在一起。图4显示了nvSRAM的单元结构。
图3:nvSRAM概念
图4:nvSRAM单元
非易失性SRAM——用于企业级SSD的异步解决方案
图5显示了企业级SSD数据流和元数据断电需要备份时用作非易失性缓存的异步nvSRAM。图5所示的VCAP电容可为STORE循环(将数据从SRAM移动到非易失性单元)进行供电。VCAP是大约50 μF的标准电容(详见数据表)。
图5:企业级SSD异步nvSRAM解决方案
对于新设计而言,当前可用的异步nvSRAM器件密度在256-kbit到8-Mbit之间,2012年还推出了16-Mbit的器件。
非易失性SRAM——用于企业级SSD的同步解决方案
图6显示了用于企业级SSD的非易失性SRAM器件,其基于全新同步高带宽(最高12.8Gbps)NAND接口nvSRAM。这种器件密度将达16-Mbit,目前已经推出样片,预计于2013年第一季度投入量产。
图6:企业级SSD同步nvSRAM解决方案
如前所述,超级电容或分立钽电容组可用作为断电时从SDRAM向NAND闪存传输数据提供所需电力的二级电压供电源。断电时从快速易失性存储器向非易失性存储器传输的理念与20年前赛普拉斯发明的nvSRAM理念相同,差别在于赛普拉斯nvSRAM在统一的单片IC中包含了电源检测、数据传输管理、快速易失性存储器和非易失性存储器等。数据传输在所有存储器单元中完成,同时耗电极低,时间也只有几毫秒。而SDRAM到闪存的传输在系统级进行,采用高功率I/O连接,这会很快消耗掉大型电容中的电量,而且完成时间也长得多。
此外,企业级SSD架构中的SSD控制器也支持高速同步NAND到NAND闪存器件的接口(ONFI 3.0、Toggle DDR 2.0)。高速同步NAND接口目前得到久经考验的nvSRAM核心技术支持,采用业界标准的ONFI 3.0/Toggle 2.0接口,可为企业级SSD厂商提供高性能的同步非易失性存储器解决方案。全新nvSRAM可直接放在NAND闪存总线上,成为关键非易失性数据的有源存储器空间(见图6)。全新nvSRAM接口的设计支持开放式标准,将采用标准指令和标准信号时序。这种方法不再需要或者能尽可能少需要超级电容或钽电容组以及数据传输逻辑,从而大幅缩短企业级SSD系统的断电备份时间。此外,这也消除了电容备份解决方案相关的可靠性问题。
企业级SSD断电时需要快速可靠的关键数据流和元数据备份。当前的电容备份解决方案存在严重的可靠性问题。本文分析了异步nvSRAM解决方案,并介绍了放在NAND闪存总线上的同步nvSRAM。nvSRAM可提供快速可靠的关键企业级SSD数据备份功能,从而消除了超级电容和钽电容组在此过程中的可靠性问题。
关于作者
PramodhTumkurPrakash是赛普拉斯的高级产品市场营销工程师。他获得微电子科学硕士学位,在应用/系统开发领域拥有7年经验。
超级电容器(supercapacitor或ultracapacitor,抑或为双电层电容器EDLC)是相对于任何其它可用电容类型能够显著提高能量密度的电容,并且可作为电池备份应用中可靠的电池替代产品。
但是,超级电容器存在可靠性问题,已知其在长期可靠性方面存在不足,这一点跟铝电解电容器比较相像。超级电容器的使用寿命有限,因为经过一段时间在工作温度下电解质会从元件挥发,从而造成元件磨损。超级电容器的性能会随着电解质的损失而逐渐下降,最后几乎没有什么警告甚至毫无警告就会彻底失效。此外,工作电压越高、工作和非工作温度环境越差,电解质损失率也就越高。环境工作温度每升高10℃,超级电容器的预期使用寿命就要削减大约一半。
超级电容器故障模式包括:
●电化学分解压力过大造成单元开裂。
●电压和温度在单元内部生成气压,随时间推移慢慢增大,压力达到一定极限,就会造成机械扩散通常是外壳槽开裂。
长期在较高工作温度下使用,电解质的水分蒸发,等效串联电阻(ESR)会增加。基本故障模式就是ESR增加的开裂模式。所有超级电容器都带有警告信息:“使用此电容器时应在设计中采用适当的安全措施,包括冗余和保护措施等。”
分立电容器
分立电容器组可提供更可靠的选择,但需要更小心的设计。基于分立电容器的保持电路采用并行连接的分立电容器组。所用的分立电容器可以是铝电容、钽电容或铌电容。它不像超级电容那么小型化,分立解决方案的电容尺寸比会占据大量板卡空间。此外,我们知道钽电容对短路和冒烟故障比较敏感。
nvSRAM解决方案
非易失性SRAM(nvSRAM)对于企业级SSD的优势在于能无需使用或尽可能少用超级电容或分立电容组,并能通过单芯片的免电池非易失性RAM技术就能为传输中的SDRAM缓存数据和元数据可靠备份。以下简要介绍nvSRAM的工作,随后将介绍在企业级SSD中采用nvSRAM器件的具体细节。
非易失性SRAM(nvSRAM)
nvSRAM在单个器件中完美结合了两大CMOS技术:SRAM和SONOS非易失性技术。在正常加电系统工作条件下,nvSRAM就像传统SRAM一样工作。IC的SRAM部分以高达20ns的存取时间进行读写,采用标准的异步SRAM信号和时序。如果出现电源故障,那么芯片可智能检测到威胁,并自动将SRAM数据副本保存在非易失性存储器中,而且能保持20年以上不改变。加电RECALL后,IC将数据副本返回到SRAM中,系统就能刚好从上次停止的地方重新开始工作,从而确保快速SRAM绝不会丢失数据。此外,最新高密度(16Mb)nvSRAM还支持高带宽DDR NAND闪存(ONFI 3.0/Toggle 2.0)接口。
SRAM和内部非易失性阵列之间的传输完全并行(单元对单元),这就能在8ms乃至更少时间内完成STORE操作,用户根本毫无感觉。该IC系列的大多数版本还为用户提供可控的软件STORE和RECALL启动命令以及用户可控的硬件STORE启动命令。
nvSRAM是高度可靠的产品,采用业经验证的大容量CMOS + SONOS工艺。此外,它在军事、商业、存储、医疗和工业应用中也有着20多年的历史。
图3显示了nvSRAM的概念,它将快速SRAM元件和非易失性元件在单个单元中整合在一起。图4显示了nvSRAM的单元结构。
图3:nvSRAM概念
图4:nvSRAM单元
非易失性SRAM——用于企业级SSD的异步解决方案
图5显示了企业级SSD数据流和元数据断电需要备份时用作非易失性缓存的异步nvSRAM。图5所示的VCAP电容可为STORE循环(将数据从SRAM移动到非易失性单元)进行供电。VCAP是大约50 μF的标准电容(详见数据表)。
图5:企业级SSD异步nvSRAM解决方案
对于新设计而言,当前可用的异步nvSRAM器件密度在256-kbit到8-Mbit之间,2012年还推出了16-Mbit的器件。
非易失性SRAM——用于企业级SSD的同步解决方案
图6显示了用于企业级SSD的非易失性SRAM器件,其基于全新同步高带宽(最高12.8Gbps)NAND接口nvSRAM。这种器件密度将达16-Mbit,目前已经推出样片,预计于2013年第一季度投入量产。
图6:企业级SSD同步nvSRAM解决方案
如前所述,超级电容或分立钽电容组可用作为断电时从SDRAM向NAND闪存传输数据提供所需电力的二级电压供电源。断电时从快速易失性存储器向非易失性存储器传输的理念与20年前赛普拉斯发明的nvSRAM理念相同,差别在于赛普拉斯nvSRAM在统一的单片IC中包含了电源检测、数据传输管理、快速易失性存储器和非易失性存储器等。数据传输在所有存储器单元中完成,同时耗电极低,时间也只有几毫秒。而SDRAM到闪存的传输在系统级进行,采用高功率I/O连接,这会很快消耗掉大型电容中的电量,而且完成时间也长得多。
此外,企业级SSD架构中的SSD控制器也支持高速同步NAND到NAND闪存器件的接口(ONFI 3.0、Toggle DDR 2.0)。高速同步NAND接口目前得到久经考验的nvSRAM核心技术支持,采用业界标准的ONFI 3.0/Toggle 2.0接口,可为企业级SSD厂商提供高性能的同步非易失性存储器解决方案。全新nvSRAM可直接放在NAND闪存总线上,成为关键非易失性数据的有源存储器空间(见图6)。全新nvSRAM接口的设计支持开放式标准,将采用标准指令和标准信号时序。这种方法不再需要或者能尽可能少需要超级电容或钽电容组以及数据传输逻辑,从而大幅缩短企业级SSD系统的断电备份时间。此外,这也消除了电容备份解决方案相关的可靠性问题。
企业级SSD断电时需要快速可靠的关键数据流和元数据备份。当前的电容备份解决方案存在严重的可靠性问题。本文分析了异步nvSRAM解决方案,并介绍了放在NAND闪存总线上的同步nvSRAM。nvSRAM可提供快速可靠的关键企业级SSD数据备份功能,从而消除了超级电容和钽电容组在此过程中的可靠性问题。
关于作者
PramodhTumkurPrakash是赛普拉斯的高级产品市场营销工程师。他获得微电子科学硕士学位,在应用/系统开发领域拥有7年经验。
半导体 连接器 电容 电子 电压 电路 电容器 电阻 CMOS 赛普拉斯 总线 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 高效地驱动LED(04-23)
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 实现智能太阳能管理的微型逆变器应运而生(05-06)
- 以太网供电芯片:合规与超规(07-25)
