电池基电源管理系统设计
时间:12-20
来源:互联网
点击:

影响效率的另一因素是输出整流器配置。一些电压稳压器IC采用外部肖特基整流器。应由快速开关功率MOSFET构成的同步整流器(图2)替代肖特整流器,这可改善效率。

现在开关稳压器IC工作在100KHz~2MHz,这会产生影响效率的另外因素。稳压器所采用的磁元件(电感器和变压器 )在开关频率必须有最小的功耗。更快的开关频率考虑采用物理尺寸更小的外部元件,较高的开关频率可导致较大的磁芯材料损耗。
4 LDO稳压器
LDO稳压器(图3)是线性IC,其主要元件是功率半导体和差分放大器(误差放大器)。差分放大器的一个输入监控输出比率。差分放大器的第2个输入来自稳定的电压基准。若输出电压相对基准电压趋向于升高,则加到功率半导体的驱动改变,以保持恒定输出电压。

LDO借助输入和输出电压之间的差,使IC稳定输出电压。LDO调整输出电压直到它的输入和输出接近于相互之间电压降为止。理想的电压降应尽可能的低,以使功耗最小和效率最高。
LDO稳压器的压降决定最低可用电源电压。对于标定的3~5.5V输入可标定LDO提供3.3V输出。在150mA,100mV压降正在变得更标准化。
现有的LDO稳压器可提供可调或固定输出电压。固定输出型LDO的输出电压变化为±2%~±6%,通常提供1~5V范围的输出。可调LDO稳压器允许设计人员采用外部电阻器来设置输出电压。
输出噪声是LDO稳压器需考虑的另一问题。通常在宽范围内额定指标是微伏rms。例如,一个LDO稳压器在1~100KHz 范围可产生100mVrms。
5 电荷泵
电荷泵(开关电容器)IC提供dc-dc电压变换,是用开关网络充电和放电一个或多个电容器。开关网络在电容器的充电和放电状态之间触发。
如图4所示,电容器C1穿梭充电,电容器C2保持电荷和滤波输出电压。

基本的电荷泵缺乏稳压,通常要增加线性稳压或电荷泵调制。线性稳压具有最低的输出噪声,所以能提供较好的性能。电荷泵调制(控制开关电阻)对于给定的裸片大小(或成本)能提供额外输出电流,因为稳压器IC不需要包含串联通路晶体管。
电荷泵的主要优点是消除了与电感器或变压器有关的磁场和EMI。存在的一个可能的EMI源是在输入源或另外电容器连接不同电压时,高充电电流流到电容器C1。稳定的电荷泵降压效率大于LDO,但小于电感开关稳压器。另外,电荷泵所需空间较小。
6 选择正确的稳压器拓扑
合适的电压稳压器拓扑选择从来自电池的输入电压和负载所需的电压和电流着手。在已知这些参数后,就可开始选择最佳电压稳压器IC的进程。
关键的参数包括:
最大输出电流:电压稳压器必须在所有工作条件下能提供负载所需的最大电流。一些稳压器可提供高达10A的电流,而另外一些稳压器仅给出200~300mA。
最大输出电压:所需的输出电压取决于具体应用。某些拓扑可提供20V或更高电压,而另外拓扑提供10V以下电压。来自电池的输入电压也可影响电压稳压器所产生的最大电压。
效率:效率是输出功率与输入功率之比,效率主要影响可用的电池寿命。效率越高,寿命越长。
大小和重量:物理尺寸和重量主要取决于电压稳压器所需的外部元件数,电压稳压器会影响电路板空间和设备尺寸。
EMI:电路板布线或电压稳压器中的开关电路可能引起传导和辐射EMI。
不同负载需要不同的电池和不同的方法来管理电池电源和负载。表1给出3个主要应用的关键要求。

7 关键的设计折衷考虑
电池基系统性能低的最佳化需要折衷考虑电池、电压稳压器和负载。
电池能量(安培一小时)与电池大小和重量的关系。
一次与二次电池比较。
热量与处理器控制的电池监控器的关系。
电池类型与充电要求的关系。
电池类型与保护要求的关系。
电压稳压器拓扑与负载要求的关系。
电压稳压器拓扑与效率的关系。
电压稳压器拓扑(功率输出)与热管理的关系。
电压稳压器拓扑(功率输出)与半导体封装大小的关系。
线性与开关稳压器的比较。
开关频率与EMI的关系。
开关频率与电路板大小/空间要求的比较
电源管理 电路 电压 电流 LDO PWM 半导体 MOSFET 开关电源 变压器 电阻 电感 放大器 电容 电容器 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 高效地驱动LED(04-23)
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 实现智能太阳能管理的微型逆变器应运而生(05-06)
