一种隔离型双向软开关DC/DC变换器
时间:12-14
来源:互联网
点击:
针对双向DC/DC变换器存在的开关损耗高等问题,提出了一种新型的隔离型双向软开关DC/DC变换器。该变换器由对称的拓扑结构组成。在电感和变压器漏感的作用下,变换器中的开关元件能够在较大的负载范围内实现零电压开关。同时在脉宽调制的控制下,二极管实现了零电流关断。这些措施减小了开关损耗、电压电流应力以及电磁干扰。分析了工作原理和开关过程,研制了一台500W的试验样机并进行了试验。试验结果证明:在轻载和重载的条件下,所有的开关管都能够零电压导通,同时二极管能够在电流为零(ZCS)的情况下自然关断。
随着功率变换技术的发展,人们对开关电源的性能、重量、体积、效率和可靠性提出了更高的要求,而开关电源的高频化则是使其满足上述要求的一个重要手段,特别是其有助于减小电感、变压器等磁性元件的体积,并改善开关电源的电磁兼容性,因此成为开关电源技术发展的一个重要趋势。但开关元件的开关损耗限制了工作频率的进一步提高,成为制约开关电源高频化的主要因素,所以,开关电源的软开关技术一直是电力电子技术的一个重要研究方向。而双向DC/DC变换器是近年来功率变换的又一个研究热点,它可广泛地应用于电动汽车、分布式发电系统、智能充放电机等方面,具有广阔的应用前景。双向DC/DC变换器不仅可以充当两个不同电压等级电气系统之间的联系桥梁,还能够进行能量调节和管理。由于双向DC/DC变换器具有能量双向流动的特点,因此与单向DC/DC变换器相比,它的拓扑结构有所不同:通常,双向DC/DC变换器的变压器原副边两侧都采用全控元件,元件较多,因而实现软开关的难度更大。
本文将Buc-k/Boost电路与半桥电路相结合,提出了一种对称结构的隔离型双向软开关DC/DC变换器。
1 原理简介
1.1 能量双向流动的原理
新型隔离型双向软开关DC/DC变换器的电路结构如图1所示,变压器两侧均采用“半桥”结构,同一桥臂的上下两个功率开关器件S1和S2、S3和S4分别互补导通。当能量由V1侧流向V2侧时,称为正向工作模式,此时由S1、S2组成超前桥臂,S3、S4组成滞后桥臂,即S1的触发脉冲超前于S3的触发脉冲一定角度(移相角);反之,当能量由V2侧流向V1侧时,称为反向工作模式,相应地,S3、S4组成超前桥臂,S1、S2组成滞后桥臂。以正向工作模式为例,介绍能量的流动过程如下。
为简化分析,先假定下列条件:
1)所有的开关元件都是理想的;
2)电路工作在稳态;
3)所有的储能元件都是无损的。
从变压器的原边观察,电路类似于Boost电路,通过对S2导通时间(占空比)的调节,可以在a点获得不同的电压。同时利用S1和S2的轮流导通,在变压器原边得到正负交替的电压。而对于变压器副边,利用S3和S4的反并联二极管进行整流,把变压器上的脉冲交流电压整流成直流,并对电容C3、C4充电。在电容C3、C4足够大的情况下,电容上的电压可以认为不变。此时,副边电路的原理与Buck电路类似。
能量流动的具体过程如下。
S2关断后,变压器原边电路类似于Boost电路的放电状态。电感L1通过Ds1对C1充电,此时S1可以实现零电压导通。随着变压器原边电流逐渐上升,充电电流减小。当电流减小至零并改变方向时,S1导通,输入电流iL1流经漏感Lσ1、原边线圈对C2充电,同时C1通过S1、Lσ1、原边线圈构成的回路放电。此时,变压器原边电压的极性为上正下负,同时原边电流ip从同名端流入,电压与电流为“关联方向”,因而由V1输出的能量传递到变压器中。相应地,此时变压器副边反并联二极管DS3处于导通状态,副边电流is一部分流经L2、负载(V2侧)使C4放电,另一部分通过Ds3对C3充电。变压器副边电压极性为上正下负,is从同名端流出,电压、电流为“反关联方向”,因此能量由变压器传递到V2侧。
当原边S2导通时,由V1、L1、S2组成的回路对L1充电,iL1缓慢上升,同时C2通过变压器原边线圈、Lσ1、S2组成的回路放电。变压器原边电压极性为上负下正,且ip从同名端流出。此时副边Ds4导通,is流经Ds4、副边线圈对C4充电,同时电感L2通过负载、Ds4放电。变压器副边电压极性为上负下正,is从同名端流入,在此期间V1侧输出能量,V2侧输入能量。
由于拓扑结构在变压器两侧完全对称,因此变换器工作在反向模式时,工作原理以及能量的流动过程与上述过程类似。
1.2 软开关的实现
正向工作模式下,一个完整的开关周期中的主要原理波形如图2所示。在开关元件并联结电容与并联电容的作用下,即将关断的开关元件上的电压不能发生突变,因此开关元件可以认为在零电压的情况下关断。由于同一桥臂上下两个脉冲之间的间隔很小,利用电感和结电容的谐振,使即将导通的开关元件的结电容放电,当结电容两端的电压为零时,反并联二极管承受正向电压而导通,从而为开关元件的零电压导通创造了条件。与移相全桥电路相比,由于变压器副边不存在占空比丢失,副边电感L2参与谐振,因此滞后桥臂也可以在较大负载范围内实现零电压导通。与上述开关过程类似,变压器副边的S3和S4也是利用各自的反并联二极管的导通实现零电压开通,S3和S4的开通主要是为减小反并联二极管Ds3和Ds4反向恢复引起的损耗以及电磁干扰。以S3为例:反并联二极管Ds3导通后,S3可以在零电压的条件下开通,更为重要的是Ds3中的电流会逐渐减少至零,电流转移到S3中,Ds3实现软关断(ZCS),从而减少了Ds3关断过程中反向恢复带来的影响。由于这种拓扑结构的DC/DC变换器在变压器两侧完全对称,因此能量双向流动时的软开关条件相同。本文中的实验结果是在负载为电阻的情况下得到的。如果负载为蓄电池等电源,仿真结果证明软开关特性保持不变。
随着功率变换技术的发展,人们对开关电源的性能、重量、体积、效率和可靠性提出了更高的要求,而开关电源的高频化则是使其满足上述要求的一个重要手段,特别是其有助于减小电感、变压器等磁性元件的体积,并改善开关电源的电磁兼容性,因此成为开关电源技术发展的一个重要趋势。但开关元件的开关损耗限制了工作频率的进一步提高,成为制约开关电源高频化的主要因素,所以,开关电源的软开关技术一直是电力电子技术的一个重要研究方向。而双向DC/DC变换器是近年来功率变换的又一个研究热点,它可广泛地应用于电动汽车、分布式发电系统、智能充放电机等方面,具有广阔的应用前景。双向DC/DC变换器不仅可以充当两个不同电压等级电气系统之间的联系桥梁,还能够进行能量调节和管理。由于双向DC/DC变换器具有能量双向流动的特点,因此与单向DC/DC变换器相比,它的拓扑结构有所不同:通常,双向DC/DC变换器的变压器原副边两侧都采用全控元件,元件较多,因而实现软开关的难度更大。
本文将Buc-k/Boost电路与半桥电路相结合,提出了一种对称结构的隔离型双向软开关DC/DC变换器。
1 原理简介
1.1 能量双向流动的原理
新型隔离型双向软开关DC/DC变换器的电路结构如图1所示,变压器两侧均采用“半桥”结构,同一桥臂的上下两个功率开关器件S1和S2、S3和S4分别互补导通。当能量由V1侧流向V2侧时,称为正向工作模式,此时由S1、S2组成超前桥臂,S3、S4组成滞后桥臂,即S1的触发脉冲超前于S3的触发脉冲一定角度(移相角);反之,当能量由V2侧流向V1侧时,称为反向工作模式,相应地,S3、S4组成超前桥臂,S1、S2组成滞后桥臂。以正向工作模式为例,介绍能量的流动过程如下。
为简化分析,先假定下列条件:
1)所有的开关元件都是理想的;
2)电路工作在稳态;
3)所有的储能元件都是无损的。
从变压器的原边观察,电路类似于Boost电路,通过对S2导通时间(占空比)的调节,可以在a点获得不同的电压。同时利用S1和S2的轮流导通,在变压器原边得到正负交替的电压。而对于变压器副边,利用S3和S4的反并联二极管进行整流,把变压器上的脉冲交流电压整流成直流,并对电容C3、C4充电。在电容C3、C4足够大的情况下,电容上的电压可以认为不变。此时,副边电路的原理与Buck电路类似。
能量流动的具体过程如下。
S2关断后,变压器原边电路类似于Boost电路的放电状态。电感L1通过Ds1对C1充电,此时S1可以实现零电压导通。随着变压器原边电流逐渐上升,充电电流减小。当电流减小至零并改变方向时,S1导通,输入电流iL1流经漏感Lσ1、原边线圈对C2充电,同时C1通过S1、Lσ1、原边线圈构成的回路放电。此时,变压器原边电压的极性为上正下负,同时原边电流ip从同名端流入,电压与电流为“关联方向”,因而由V1输出的能量传递到变压器中。相应地,此时变压器副边反并联二极管DS3处于导通状态,副边电流is一部分流经L2、负载(V2侧)使C4放电,另一部分通过Ds3对C3充电。变压器副边电压极性为上正下负,is从同名端流出,电压、电流为“反关联方向”,因此能量由变压器传递到V2侧。
当原边S2导通时,由V1、L1、S2组成的回路对L1充电,iL1缓慢上升,同时C2通过变压器原边线圈、Lσ1、S2组成的回路放电。变压器原边电压极性为上负下正,且ip从同名端流出。此时副边Ds4导通,is流经Ds4、副边线圈对C4充电,同时电感L2通过负载、Ds4放电。变压器副边电压极性为上负下正,is从同名端流入,在此期间V1侧输出能量,V2侧输入能量。
由于拓扑结构在变压器两侧完全对称,因此变换器工作在反向模式时,工作原理以及能量的流动过程与上述过程类似。
1.2 软开关的实现
正向工作模式下,一个完整的开关周期中的主要原理波形如图2所示。在开关元件并联结电容与并联电容的作用下,即将关断的开关元件上的电压不能发生突变,因此开关元件可以认为在零电压的情况下关断。由于同一桥臂上下两个脉冲之间的间隔很小,利用电感和结电容的谐振,使即将导通的开关元件的结电容放电,当结电容两端的电压为零时,反并联二极管承受正向电压而导通,从而为开关元件的零电压导通创造了条件。与移相全桥电路相比,由于变压器副边不存在占空比丢失,副边电感L2参与谐振,因此滞后桥臂也可以在较大负载范围内实现零电压导通。与上述开关过程类似,变压器副边的S3和S4也是利用各自的反并联二极管的导通实现零电压开通,S3和S4的开通主要是为减小反并联二极管Ds3和Ds4反向恢复引起的损耗以及电磁干扰。以S3为例:反并联二极管Ds3导通后,S3可以在零电压的条件下开通,更为重要的是Ds3中的电流会逐渐减少至零,电流转移到S3中,Ds3实现软关断(ZCS),从而减少了Ds3关断过程中反向恢复带来的影响。由于这种拓扑结构的DC/DC变换器在变压器两侧完全对称,因此能量双向流动时的软开关条件相同。本文中的实验结果是在负载为电阻的情况下得到的。如果负载为蓄电池等电源,仿真结果证明软开关特性保持不变。
电感 变压器 电压 二极管 电流 开关电源 电力电子 电动汽车 电路 电容 电阻 仿真 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 电源设计小贴士 4:阻尼输入滤波器(第二部分)(02-10)
- 电源设计小贴士5:降压-升压电源设计中降压控制器的使用(03-18)