一种新型开关电源模块均流技术的研究
时间:09-21
来源:互联网
点击:
模糊控制器设计
通常模糊控制规则由总结实际操作经验而得来,但对于并联电源系统这种特定对象,要总结人工控制经验比较困难,因此本设计考虑将上述经典PID控制策略模糊化,得到所需控制规则。
定义输入量e和e的模糊集为:{负(N)、零(Z)、正(P)},控制量u的模糊集为{负大(NB)、负小(NS)、零(Z)、正小(PS)、正大(PB)},对应隶属函数均为三角型(图3)。基于式(2)PID专家知识的模糊变量赋值按以下过程建立:因PID调节器的比例与微分系数之比kp/kd=200,若e的变化范围是[-1,1],则可以确定e的变化范围是[-200,200]。如果e是负(-1),且e也是负(-200),那么基于PID的模糊推理结果即控制量u约是-40,也就是说u值论域中的负大(NB)对应于-40。依此类推,可获得其余推理结果,模糊控制表如表1所示。
图3 隶属函数
表1 模糊控制规则表
实验与结论
这里就三个BUCKDC/DC电源模块并联系统进行仿真实验研究。图4a和图4b分别是70%负载条件下CSC采用PID调节器和FUZZY-PID调节器时系统的阶跃响应波形,从中可以看出:
图4 并联电源系统阶跃响应图
(1)基于FUZZY-PID均流调节器的电源系统中各模块电流波形几乎完全一致,而在PID调节作用下各模块电流波形差别较大,这说明FUZZY-PID控制的稳定性好,稳态精度高,动态响应快且无超调。
系统主电路
逆变主电路为交-直-交电压型,整流侧为单相二极管不可控型。这种方式不仅控制简单,而且系统具有较高的功率因数。为减小装置体积,减少谐波,提高电流波形质量。逆变功率元件采用高开关频率的三菱电机公司第三代智能功率模块PM20CSJ060。该模块为六合一封装,内部为三相桥式电路结构,内部集成了高速、低功耗的IGBT芯片及其驱动、保护电路。此外,该模块还集成了过热和欠压锁定保护电路,使得系统的可靠性得到进一步提高。控制电路上的LF2407芯片输出的六路空间矢量信号SVPWM经光耦6N136实现对IPM隔离驱动,再将整流滤波后的直流电压逆变为所需的高频交流电驱动永磁空调压缩机。
系统中还有电流检测电路,采用霍尔电流传感器检测永磁电机A、C两相,再利用采样电阻和多级运放将电流信号处理为在0~5V间变化的模拟电压信号,与集成在LF2407内的A/D转换器外引脚相连接。由于无位置传感器技术无法知道转子的初始位置,永磁电机也只有在起动后才能工作在无位置传感器状态下,所以用光电式旋转编码器来实现转子初始位置的检测。其它的保护电路由LF2407的事件管理器来实现,一旦系统出现故障,片内固化的中断程序将自动切断系统的SVPWM输出,直到故障消失和系统复位。
系统软件设计
本文研究的永磁空调系统控制软件全部由LF2407完成,主要是完成空间磁场定向控制,产生SVPWM信号。控制软件包括初始化程序、主程序和中断服务子程序三个部分。系统在每次复位后,首先执行初始化程序,完成DSP内部设定和初始状态的检测,然后开启中断,执行主程序。一旦外部中断条件满足时,系统执行中断服务子程序,直到系统重新复位。图5为SVPWM中断服务子程序框图。
图5 SVPWM中断子程序流程图
结论
本文根据永磁同步电动机矢量控制原理和变频空调器的要求,开发了一套基于DSP的全新变频空调控制系统。利用LF2407的六个PWM全比较器产生的SVPWM控制信号就可以实现对永磁同步电动机的变频控制。该空调控制系统充分利用了LF2407的超强实时计算能力和一些集成器件,使整个系统结构简单、产品开发周期短、可靠性强。
通常模糊控制规则由总结实际操作经验而得来,但对于并联电源系统这种特定对象,要总结人工控制经验比较困难,因此本设计考虑将上述经典PID控制策略模糊化,得到所需控制规则。
定义输入量e和e的模糊集为:{负(N)、零(Z)、正(P)},控制量u的模糊集为{负大(NB)、负小(NS)、零(Z)、正小(PS)、正大(PB)},对应隶属函数均为三角型(图3)。基于式(2)PID专家知识的模糊变量赋值按以下过程建立:因PID调节器的比例与微分系数之比kp/kd=200,若e的变化范围是[-1,1],则可以确定e的变化范围是[-200,200]。如果e是负(-1),且e也是负(-200),那么基于PID的模糊推理结果即控制量u约是-40,也就是说u值论域中的负大(NB)对应于-40。依此类推,可获得其余推理结果,模糊控制表如表1所示。
图3 隶属函数
表1 模糊控制规则表
实验与结论
这里就三个BUCKDC/DC电源模块并联系统进行仿真实验研究。图4a和图4b分别是70%负载条件下CSC采用PID调节器和FUZZY-PID调节器时系统的阶跃响应波形,从中可以看出:
图4 并联电源系统阶跃响应图
(1)基于FUZZY-PID均流调节器的电源系统中各模块电流波形几乎完全一致,而在PID调节作用下各模块电流波形差别较大,这说明FUZZY-PID控制的稳定性好,稳态精度高,动态响应快且无超调。
系统主电路
逆变主电路为交-直-交电压型,整流侧为单相二极管不可控型。这种方式不仅控制简单,而且系统具有较高的功率因数。为减小装置体积,减少谐波,提高电流波形质量。逆变功率元件采用高开关频率的三菱电机公司第三代智能功率模块PM20CSJ060。该模块为六合一封装,内部为三相桥式电路结构,内部集成了高速、低功耗的IGBT芯片及其驱动、保护电路。此外,该模块还集成了过热和欠压锁定保护电路,使得系统的可靠性得到进一步提高。控制电路上的LF2407芯片输出的六路空间矢量信号SVPWM经光耦6N136实现对IPM隔离驱动,再将整流滤波后的直流电压逆变为所需的高频交流电驱动永磁空调压缩机。
系统中还有电流检测电路,采用霍尔电流传感器检测永磁电机A、C两相,再利用采样电阻和多级运放将电流信号处理为在0~5V间变化的模拟电压信号,与集成在LF2407内的A/D转换器外引脚相连接。由于无位置传感器技术无法知道转子的初始位置,永磁电机也只有在起动后才能工作在无位置传感器状态下,所以用光电式旋转编码器来实现转子初始位置的检测。其它的保护电路由LF2407的事件管理器来实现,一旦系统出现故障,片内固化的中断程序将自动切断系统的SVPWM输出,直到故障消失和系统复位。
系统软件设计
本文研究的永磁空调系统控制软件全部由LF2407完成,主要是完成空间磁场定向控制,产生SVPWM信号。控制软件包括初始化程序、主程序和中断服务子程序三个部分。系统在每次复位后,首先执行初始化程序,完成DSP内部设定和初始状态的检测,然后开启中断,执行主程序。一旦外部中断条件满足时,系统执行中断服务子程序,直到系统重新复位。图5为SVPWM中断服务子程序框图。
图5 SVPWM中断子程序流程图
结论
本文根据永磁同步电动机矢量控制原理和变频空调器的要求,开发了一套基于DSP的全新变频空调控制系统。利用LF2407的六个PWM全比较器产生的SVPWM控制信号就可以实现对永磁同步电动机的变频控制。该空调控制系统充分利用了LF2407的超强实时计算能力和一些集成器件,使整个系统结构简单、产品开发周期短、可靠性强。
电源模块 电压 电流 电子 神经网络 电力电子 PWM 仿真 电路 二极管 IGBT 传感器 电阻 编码器 DSP 电动机 比较器 相关文章:
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 超宽输入范围工业控制电源的设计(10-15)
- 即将普及的碳化硅器件(10-19)
- 多重转换:冗余电源系统电流限制的一种新方法(12-24)
- 基于CAN通信的电源监控系统的设计(04-06)
- 基于CAN总线的低压智能断路器的设计(04-06)