微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于CPLD的高速可程控数字延迟线系统的设计

基于CPLD的高速可程控数字延迟线系统的设计

时间:08-02 来源:互联网 点击:
3 系统实现



图2 系统结构图

高速可程控数字延迟线系统的整体结构图如图所示。Kicker电源需要接收三路信号:主闸流管脉冲信号(MS)、从闸流管脉冲信号(DS)和高压脉冲信号(HV),故需要完成对这三路脉冲信号的可编程延迟。系统采用CPLD完成对三路信号的高速可程控延迟,CPLD外围电路包括晶体振荡器、系统复位电路及DCBA编程。延迟时间Δt由晶体振荡器输出时钟频率f和DCBA编程值共同确定,调节范围为(1 ~ 24-1)/f。DCBA编程值设置值为0000 ~ 1111,当时钟频率f=200MHz时,延迟时间调节范围为5ns ~ 75ns,时间调节精度为5ns。

  
CPLD芯片包括三路数字延迟线模块,单模块的数字延迟线原理图如图3所示,包括MUX模块、COUNTER_CDL模块、MYCH模块、MYTFF模块和MYSEL模块。数字延迟线模块采用VHDL语言进行编程,程序码较长,限于篇幅,不再给出其VHDL源程序码[5][6],各模块功能如下:

  
图3 数字延迟线原理图


MUX模块为逻辑控制模块,输出Q由控制端SEL电平高低选择输出与输入D0同相或反相。COUNTER_CDL为可逆计数器模块,根据DCBA编程设定值对信号进行延迟,MYCH模块将总线信号转换为单路信号,使输出信号仅在总线信号值为“0000”时输出信号为低电平。MYCH模块输出信号上升沿可触发MYTFF模块输出反相,MYTFF模块为T触发器,其输出即为数字延迟线信号,该信号同时作为MUX模块的控制输入端控制MUX模块的输出。当DCBA编程设定值为“0000”时,MYTFF输出信号并不是数字延迟线输入信号,即以上设计不能完成零延时,MYSEL模块为信号选择输出模块,在DCBA编程码为“0000”时,输出为延迟线输入信号,否则,输出为编程延迟信号。


 图4 EPM3032ALC44-4的I/O布局


4 仿真及波形

  
本系统采用的CPLD芯片为ALTERA公司的EPM3032ALC44-4芯片,其最高运行频率为227.3MHz。采用MAX+PLUSⅡ10.0软件工具开发。设计输入完成后,进行整体的编译和逻辑仿真,然后进行转换、延时仿真生成配置文件,最后下载至CPLD器件,完成结构功能配置,实现其硬件功能。CPLD芯片EPM3032ALC44-4的各管脚布局如图4所示。其中clk时钟端口采用了芯片的全局时钟端,管脚号为43,输入信号为ms、ds和hv,输出为mso、dso和hvo。各管脚序号见图4所示。
  
数字延迟线模块编译后进行仿真,所得仿真波形图如图5所示。DCBA编程十进制值为4,延迟线输出信号Sigout相对输入信号Signal刚好由4个时钟周期的延迟。Clk时钟频率设定为f=100MHz,即周期T=10ns,所以延迟时间Δt=4×10=40ns. 延迟线最大延迟误差只是1个字的计数误差,所以时钟脉冲频率越高,误差越小,由于采用的CPLD芯片的最高运行频率为227.3MHz,所以最小延迟误差约为4.5ns。如果采用工作频率更高的CPLD芯片,可进一步提高延迟误差的精度。由定时分析,输入信号到输出信号传播延迟为4.5ns,由时钟信号clk到输出信号的传播延迟时间为9.1ns.

5 结论
  
本文作者创新点:摒弃了传统的采用两个参数完全相同的延迟模块来实现数字延迟线的设计方法,设计了一种由单一模块可同时对脉冲上升沿和下降沿进行延迟的数字延迟线,并采用了CPLD用以实现高速可程控数字延迟线系统的设计。另外,该数字延迟线系统可通过提高晶振频率,采用速度更高的CPLD芯片来进一步降低延迟误差。本文所述系统已完成调试工作并已开始应用于兰州重离子加速器冷却储存环(HIRFL-CSR)的Kicker电源系统中。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top