微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 带反并联二极管IGBT中的二极管设计

带反并联二极管IGBT中的二极管设计

时间:07-11 来源:互联网 点击:


图6 用于温度计算的热等效电路


当然,针对具体硬件电路设计确定损耗平衡的各个部分并非易事。通常,工程师在外壳或导线框上测量温度。两个二极管的热阻RthJC被认为是一样的。结合系统的热等效电路如图6所示。恒定环境温度形成共同的外壳温度TC,该温度由散热器热阻以及IGBT和二极管的损耗总量决定。因此,二极管和IGBT不同的结对壳热阻RthJCD 和RthJCI可导致不同的结温TJD和TJI。

两种结合系统形成的结温如图7所示。结温接近125°C,与IGP10N60T和Vf优化型EmCon2二极管结合相比,IGP10N60T与Qrr优化型EmCon3二极管结合实现了更低的结温。在左侧条形图中,二极管和IGBT的温度要低4K,IGBT的功率损耗低0.7 W ,二极管低0.2 W。由于IGBT的RthJC更低,IGBT更大的损耗减小对结温的影响比二极管相对更少的损耗减小产生的影响要小。因此温度差是一样的。


图7  两种结合系统形成的结温


当然,损耗降低也被较小的RthJC牺牲了一部分。但是计算显示,在环境温度TA为50℃ 时,与10A-IGBT IGP10N60T结合时,最终二极管的结温大约低了4 ℃。还可以看出,IGBT的结温也低了4℃。因此,该系统总体上从所选的二极管优化方法中获益。如果达到与最终二极管一样的结温,可以从逆变器中获得更高电流,从而获得更高的功率输出,如图8所示。另一方面,在给定输出电流下,甚至可以削减散热器尺寸,从而降低驱动装置的成本。不管设计师用哪种方法,系统将实现更高的效率。


图8  逆变器中一个半桥的输出有效值电流


结语

二极管优化只考虑正向压降是不够的,这必须考虑IGBT技术以及应用条件。在本文中,与TrenchStop-IGBT并联的二极管是根据IGBT技术与应用条件进行设计的。这些二极管芯片尺寸更小,但是能比更大的Vf优化型芯片实现更低的结温。这使得工程师能够更多地利用IGBT与二极管。它可以缩小散热器的尺寸或增加给定系统的输出功率,削减系统成本。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top